

NOAA Technical Memorandum NMFS-AFSC-34

Results of the 1990 U.S.-U.S.S.R. Cooperative Bottom Trawl Survey of the Eastern and Northwestern Bering Sea Continental Shelf

T. M. Sample and D. G. Nichol

Alaska Fisheries Science Center 7600 Sand Point Way N.E., BIN C-15700 Seattle, WA, 98115-0070

U.S. DEPARTMENT OF COMMERCE

Ronald H. Brown, Secretary National Oceanic and Atmospheric Administration D. James Baker, Under Secretary and Administrator National Marine Fisheries Service Rolland A. Schmitten, Assistant Administrator for Fisheries

March 1994

This document is available to the public through:

National Technical Information Service U.S., Department of Commerce 5285 Port Royal Road Springfield, VA 22161

ABSTRACT

The Alaska Fisheries Science Center (AFSC) of the United States and the Pacific Research Institute of Fisheries and. Oceanography (TINRO) of the Union of Soviet Socialist Republics (U.S.S.R.) conducted a cooperative bottom trawl survey of the Bering Sea aboard the Russian research vessel <u>Novokotovsk</u> during May-July 1990. The primary purpose of this survey was to assess the distribution, abundance, and biological condition of groundfish resources, in both the eastern and western Bering Sea continental shelf. A separate and completely {independent trawl survey of the central and southeastern Bering Sea continental shelf was also conducted. by the AFSC during this period aboard, two U.S. research vessels.

Results summarizing geographic distribution, abundance estimates, and size composition are, presented for the principal species of fish encountered. The distribution and relative abundance of the commercially important crab species-are also shown. Results of the cooperative survey are compared to the results of the separate 1990 U.S. survey from the areas commonly fished in the eastern Bering Sea. The appendices include station and catch information, detailed abundance, size, and age data. THIS PAGE INTENTIONALLY LEFT BLANK

CONTENTS

 $\dot{\mathbf{V}}$

Introduction		1
Survey Methods	• • • • • • • • • • • • • • • • • • • •	5
Survey Are Vessel and Collection Data Analy	ea and Sampling Design	5 9 11 13
Results of the	Survey	17
Environmen Comparativ Relative I Fish Abundance, Principal Wall Pacif Yello Rock Hippo Alask Ather Pacif Green Abundance Tanne	tal Conditions re Trawl Experiment Importance of Major Taxonomic Groups Distribution, and Size Composition of Fish Species eye pollock Fic cod Sole sole pglossoides spp. Ta plaice esthes spp. Tic halibut hand turbot and Distribution of Major Crab Species er crab (C. opilio)	$ \begin{array}{r} 17\\ 18\\ 21\\ 29\\37\\48\\53\\53\\57\\ 61\\ 66\\ 71\\ 78\\ 83\\ 83\\ 86\\ 89\\ 20\end{array} $
Blue	king crab	94 07
Discussion	······································	102
Acknowledgments.		102
	atation Haul and Catab Data	105
Appendix A.	Station, Haul, and Calen Dala	TOP
Appendix B.	Abundance Estimates for Principal Fish Species	133
Appendix C.	Population Estimates by Sex and Size Groups for Principal Fish Species	151
Appendix D.	Age-Length-Keys for Walleye Pollock	177

INTRODUCTION

The Resource Assessment. and Conservation Engineering (RACE) Division of the Alaska Fisheries Science Center (AFSC) and the Pacific Research Institute of Fisheries, and Oceanography (TINRO) of the Union of Soviet Socialist Republics (U.S.S.R.) conducted a cooperative bottom trawl survey of the Bering Sea during May-July' 1990 . In addition to this cooperative survey, which was conducted aboard a Russian research vessel. an independent U.S. bottom trawl survey was conducted aboard two U.S. chartered fishing vessels from June through August. The U.S. vessels sampled the central and southeastern Bering Sea continental shelf waters, whereas the Russian vessel surveyed the northwestern portion of the shelf and northern Bering Sea in addition to the area sampled by the U.S. vessels. Seven U.S. scientists participated in survey operations conducted aboard the Russian. vessel.

Systematic bottom trawl surveys of crab and fish species in the eastern portion of the Bering Sea have been conducted by the United' States annually since the early 1970s. The primary purpose of these surveys has been to provide informationon the abundance and biological conditionof the crab and groundfish resources for management purposes and the fishing industry, as well as for scientific studies. Initial surveys were limited in area to Bristol Bay and the central portion of the eastern Bering Sea. However, during 1975 and 1979-92 the survey region was expanded to cover the major portion of the eastern. Bering Sea. Two agencies of the Soviet Union (now a part of the Russian Federation), TINRO and the All-Union Scientific Research Institute of Marine Fisheries and Oceanography (VINRO), have conducted fisheries research in the, Bering Sea since 1958 under a program called the "Bering Sea Comprehensive Scientific-Commercial Expedition" (Moiseev 1963). These surveys usually have had multiple objectives including bottom trawl sampling for groundfish, hydroacoustic-midwater trawl surveys of spawning concentrations of walleye pollock (<u>Theragra chalcogramma</u>), and ichthyoplankton surveys for pollock and other groundfish species.

The AFSC has participated in 8 of the 16 Russian groundfish surveys conducted between 1980 and 1990 by placing fisheries scientists aboard the Russian research vessels or in some cases by coordinating the survey activities of Russian and U.S. research vessels.

Coordination between U.S. and Russian survey activities have beenlimited primarily because U.S. scientists and Russian scientists have used different methods for collecting station data and processing and biological sampling of the survey catches. Differences in sampling methods between nations (Hirschberger 1985) have resulted in data sets that are not completely compatible. In addition, navigational equipment available on the Russian vessels has not always provided precise position and station data which are essential for calculating fishing area and deriving abundance estimates from average catch rates using area swept methods. Comparisons of data between U.S.

and Russian surveys conducted in recent years have shown. significant differences, primarily in abundance estimates and size distribution of many fish species. The biomass estimates for many groundfish species derived from Russian survey data have been consistently lower in comparison to estimates from U.S. surveys.

The design and configuration of the Russian bottom sampling trawls used during these surveys have varied between survey years and there has been little information available to assess their fishing efficiency and bottom-tending characteristics. Side-byside comparative fishing experiments between U.S. and Russian research vessels in 1982, 1988, and 1989, however, indicate that the Russian trawls were less efficient than the U.S. sampling trawl for some groundfish species closely associated with the sea floor.

Even though there are differences in sampling methods and Russian survey trawls over the years, these cooperative efforts are beneficial in assessing the relative distribution. of some groundfish species at other seasons of the year and in the western portion of the Bering Sea. The cooperative surveys conducted aboard Russian vessels during September and November 1980 and from January to May 1984 have provided data to describe the distribution of groundfish through the fall and spring months when survey activity by the AFSC has been limited (Raymore 1988). In the summer of 1982 the Russian, bottom trawl survey expanded the sampling area westward of the eastern Bering Sea shelf across

the U.S.-U.S.S.R. Convention Line of 1867 to the Siberian coast. Information collected during that survey has been valuable in understanding the distribution of groundfish populations that inhabit both U.S. and Russian waters.

An attempt was made to standardize U.S. and Russian data sets during the 1990 cooperative U.S. -Russian bottom trawl survey of the Bering Sea shelf. Prior to the beginning of the survey, the AFSC installed a Loran-C navigation system aboard the Russian vessel in an effort to standardize the collection of accurate position and distance-fished data. Net mensuration equipment was also provided to evaluate the configuration and fishing characteristics of the Russian trawl. Standard sampling methods used to collect station and catch data were consistent with those used aboard the U.S. vessels.

This report describes the survey and analytical methodology used and summarizes the results of the U.S.-Russian cooperative survey conducted during the summer of 1990. Complete results of the 1990 U.S. survey of the eastern Bering Sea are presented in Armistead and Nichol (1992).

The specific objectives of this report are to

- 1. Describe the geographical distribution of important living demersal resources in the eastern and western Bering Sea during the survey period;
- Describe biological characteristics and relative abundance of commercially or ecologically important. species and;
- 3. Compare the results and findings of the cooperative survey with the results of the U.S. survey from the areas commonly sampled in the eastern Bering Sea.

SURVEY METHODS

Survey Area and Sampling Design

The survey area sampled by the Russian research vessel is shown in Figure 1. This area was subdivided into three major regions for analytical, comparative, and reporting purposes. These included: the standard U.S. shelf which encompassed the combined areas of the central and southeastern Bering Sea continental shelf; the northern shelf; and the western shelf. The standard U.S. shelf, also sampled several weeks later by the two U.S. vessels, included eastern Bering Sea shelf waters from Bristol Bay west to the 200 m isobath and north to approximately St. Matthew Island. The north continental shelf area encompassed the waters between St. Matthew Island to St. Lawrence Island and from the Alaska mainland to the U.S.-U.S.S.R. Convention Line of 1867. The study region also extended into the western Bering Sea which included the shelf area from the Gulf of Anadyr west to Cape Olyutorski. These three regions were further divided into geographical subareas (Fig. 2) delineated by the 50 m, 100 m, and 200 m isobaths. These subareas define general oceanographic domains and characterize distributionpatterns of many bottom dwelling species. These subareas for the three main regions are numbered as follows: standard U.S. shelf (subareas 1-6), northern shelf (subareas 7-9), and western shelf (subareas 14-16). Detailed bathymetric information was unavailable to accurately determine depth zones in the westernsubareas 14 and 16 (Gulf of Anadyr and Cape Navarin to Cape Olyutorski). Subsequently the

Figure 1. --Station locations sampled by the <u>Novokotovsk</u> during the 1990 cooperative U.S.-Russian bottom trawl-survey of the Bering Sea shelf.

Figure 2. --Survey stratification used for the analysis of the 1990. cooperative U.S. -Russian bottom trawl survey of the Bering Sea shelf.

analysis and reporting of-data recorded from these strata combined all informationcollected at depths less than 100 m in subarea 14 and less than 200 m in subarea 16.

The overall survey area encompassed approximately 757,400 km^2 , (Table 1). The standard U.S. shelf accounted for 61% of the total area surveyed while the northern shelf (19%) and western shelf area (20%) were nearly equal in size.

The overall sampling intensity was one station sampled for every 2,744 km^2 . (Table 1). Sampling density was highest in the 'western shelf area at one sample Site for every 2,438 km^2 and

lowest in the northern shelf at one station completed for each 3,191 $\mbox{km}^2.$

Table 1.-Size of subareas and sampling density during the 1990 cooperative U.S.-Russian bottom trawl survey of the Bering Sea Shelf.

		Proportion	Sampling	
	Area	of total	Number of	density
<u>Subarea</u>	<u>(km²)</u>	area	<u>stations</u>	<u>(km²/station)</u>
Standard N	U.S. shelf			
1	77,871	0.103	31	2.512
2	41,027	0.054	16	2,564
3.	103,515	0.137	36	2,875
4	107,607	0.142	36	2,989
5	38,793	0.051	13	2,984
6	94,565	0.125	37	2,556
Total	463,390	0.612	169	2,742
North shel	lf			
7	72,829	0.096	23	2 167
8	56,020	0.074	17	3,107
9	11,568	0.015	4	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
Total	140,417	0.185	44	$\frac{2,892}{3,191}$
Wostern ch	helf			
14	87 610	0 116	31	
15	25 648	0.034	10	2,577
16	40 360	0.054	10	2,505
Total	153 619	0.203	<u> </u>	$\frac{2,124}{2,129}$
TOCAT	100,019	0.203		2,438
Total			· .	,
survey	757,423	1.000	276	2,744

Standard sampling site locations were based on a schematic 20 x 20 nautical mile grid system that was established during early U.S. bottom trawl surveys in the 1970s. One sampling station was identified in the center of each grid cell. Because of time limitations the Russian research vessel fished alternate

transects columns spaced 40 nmi apart. All transect column stations were later sampled by U.S. vessels in the standard U.S. survey area. Fishing operations began in Bristol: Bay and proceeded westward completing north/south transect columns.

A total of 6 days for comparative. fishing experiments were scheduled to evaluate fishing efficiencies between the Russian sampling net and the standard U.S. 83-112 bottom trawl. Three different sampling sites were identified in the survey area to assess trawl catchability differences for varied species assemblages (Fig. 1). A total of 10 parallel comparative trawl sets, approximately 0.1 nmi apart, were conducted by the Russian vessel at each of the three sampling sites. Two days were spent at each sampling location. The Russian net was fished along the transects the first day and the following day the U.S. 83-112 trawl was used. All tows were 30 minutes in duration. Each transect pair was sampled at approximately the same time of day with each net to reduce the effects of potential daytime variations in species availability. Catches at each location were sorted, weighed, and enumerated.

Vessel and Fishing Gear

Survey activities were conducted aboard the Russian-research vessel <u>Novokotovsk</u>, a 101.6 m stern trawler using the Russian 35/41 bottom trawl. The U.S. 83-112 bottom trawl (used by the AFSC during U.S. groundfish surveys of the eastern Bering Sea since 1982) was-also fished by the <u>Novokotovsk</u> during the

9.

comparative fishing experiments. Attributes of these sampling trawls are described in Table 2. The Russian 35/41 trawl had a longer headrope (35.0m) and footrope (49.0 m) when compared to the U.S. net (25.3 m and 34.1 m respectively). Approximately 17 m of anchor chain weighing 250 kg was used on the footrope of the Russian trawl. The U.S. net used 0.6 m chain extensions between the lower dandyline and footrope to enhance bottomtending characteristics. Roller gear was not used on either bottom trawl.

Table 2. --Description of bottom trawl sampling equipment used by the research vessel <u>Novokotovsk</u> during the 1990 cooperative U.S. -Russian bottom trawl survey of the Bering Sea shelf.

Traul	Headrope	Footrope	0000	ina		Nor	h aizea	•		
type lo	length (m)	length (m)	horz. (m)	vert. (m)	Wing (mm)	Square (mm)	Belly (mm)	Codend (mm)	Doors (m)	Dandyline length(m)
Russian	35/41 35.0	49.0	17-20	4-6	100	70	50	30	6 ²	75
U.S. 83-	112 25.3	34.1	14-16	2-3	102	102	89	89	1.8 x 2	.7 50

Trawl configuration and variations in wing spread and headrope opening height were monitored using a SCANMAR¹ net mensurationsystem. Only 62 net measurements were obtained during the trawling operations because of mensuration equipment failure. These data indicated that the horizontal opening of the Russian net ranged between 17 and 20 m with a vertical opening of

¹Reference to trade names does not imply endorsement by the National Marine Fisheries Service, NOAA.

4-6 m. The US. -83-112 net ranged from 14 to 16 m and from 2 to 3 m for horizontal and vertical openings, respectively. Position and distance fished information were collected using a Loran C navigational system. The haul began as soon as the net and trawl cable had been deployed and ended 30 minutes later when the retrieval of the net began. Beginning and ending haul positions were used to calculate distances fished at each sampling site.

Collection and Processing of Samples

An attempt was made to maintain a constant towing speed of 3.0 nmi/hr at each sampling site. Trawling operations were restricted to daylight hours to eliminate possible variation in catch rates for various species resulting from vertical diurnal migration or differential day/night net-avoidance behavior.

Sampling procedures used aboard the <u>Novokotovsk</u> were consistent with those established during U.S. groundfish surveys and are described in detail by Wakabayashi et al. (1985). A 30-minute bottom trawl was conducted at each designated sampling site. Catches weighing less than the capacity of the sampling table (approximately 1,000 kg) were completely processed. Catches over 1,800 kg were weighed with an electronic scale and released onto the deck. A random subsample was then transferred to the sorting table for processing. Species or species groups were sorted into baskets, weighed, then enumerated. Subsample weights and numbers were later expanded by the total catch to subsampled weight ratio.

The following fish species were further processed for size composition data:

1.	Walleye pollock (<u>Theragra chalcogramma</u>)
2.	Yellowfin sole (<u>Pleuronectes asper</u>)
3.	Rock sole (<u>Pleuronectes bilineatus</u>)
4.	Pacific cod (<u>Gadus</u> <u>macrocephalus</u>)
5.	Flathead sole (<u>Hippoglossoides elassodon</u>)
б.	Bering flounder (<u>Hippoglossoides robustus</u>)
7.	Arrowtooth flounder (<u>Atheresthes stomias</u>)
8.	Kamchatka flounder (<u>Atheresthes evermanni</u>)
9.	Alaska plaice (<u>Pleuronectes guadrituberculatus</u>)
10.	Pacific halibut (<u>Hippoglossus stenolepis</u>)

When possible, subsamples of approximately 150-200 individuals were randomly selected from the catches. Each subsample was first sorted by sex then measured to the nearest centimeter from the tip of the snout to the middle of the caudal ray fork of the tail. Pacific halibut were measured live and returned to the sea as soon as possible to ensure maximum survival rate. Halibut weights were later calculated using a length-weight relationship provided by the International Pacific Halibut Commission (IPHC). That relationship is

Weight_(lbs) = $(9.204 * 10^{-6}) * L(cm)$.^{3.42}

The AFSC and TINRO methods for collecting length composition data differed. U.S. scientists routinely collect length data rounded to the nearest whole centimeter. As an example, fish measuring between 9.5 and 10.5 cm were recorded as 10 cm fish on U.S. vessels. TINRO scientists, however, recorded fish lengths between 10 and 11 cm as 11 cm fish. In order to make size composition data comparable with those collected onboard the U.S. research vessels, length data from the <u>Novokotovsk</u> were-adjusted. Each, length was randomly assigned either the originally recorded length, or the original length decreased by 1 cm.

Age structures were collected from walleye pollock in the western shelf area to determine age composition. Five otoliths per sex-centimeter size category were, collected and stored in a 50% alcohol solution for subsequent evaluation by the Age and Growth Unit of the Resource Ecology and Fisheries Management Division at the AFSC. Otoliths were also collected in-the standard U.S. continental shelf aboard the U.S. vessels. Growth rates and age-length keys for walleye pollock from the standard U.S. shelf are presented in Armistead and Nichol (1992). Agelength keys were constructed separately for the western shelf and standard U.S. shelf otolith collections. Age structures were not collected for the north shelf area. Age composition was estimated by proportioning the computed population lengthfrequency distribution to ages using the respective western shelf or standard U.S. shelf age key.

Data Analysis

Methods -and procedures used in the analysis of the data collected during the 1990 survey are summarized below. A more complete description of the analytical methods used are provided in Wakabayashi et al. (1985).

During the sorting of the catch from each station, scientists attempted to identify (time permitting) all fish and invertebrates to the lowest possible taxon. However for some of the species encountered it was difficult to make positive identifications with the amount of time available between hauls. Arrowtooth flounder (<u>Atheresthes stomias</u>) and Kamchatka flounder (<u>Atheresthes evennanni</u>) are very similar in appearance and may not have been completely separated during the sorting. process, especially when the catch was subsampled. Catch and length data for these two species were subsequently grouped together and are reported here as <u>Atheresthes</u> spp. Similarly, flathead sole (<u>Hippoglossoides elassodon</u>) and the closely related Bering flounder (<u>Hippoglossoides robustus</u>) were also grouped and are presented in this report as <u>Hippoglossoides</u> spp.

Catch per unit effort (CPUE) was calculated in terms of weight (kg) and numbers caught per hectare (1 ha = 10,000 m^2) trawled as described by Alverson and Pereyra (1969). The mean CPUE value for the entire survey area was derived from the sum of the mean CPUE of each subarea weighted by the size of that subarea. Biomass and population numbers were calculated for each subarea as the product of the mean subarea CPUE and the area contained in that subarea. Total biomass and population numbers were calculated by summing the component subarea values.

The number of Individuals by size and sex category was estimated by expanding the length-frequency subsample to the total number of fish at each sampling site. These expanded

numbers were subsequently combined to represent the size composition in each subarea and then applied to the population estimate to produce population at size.

Age composition in terms of biomass for walleye pollock was estimated by first calculating biomass at length using the, equation: $B_L = P_L * \{A * - (L^B)\}$, where

B_L = biomass at length L in grams, = population number at length L, L = fork length in mm, and A and B = constants based on regressions of previous species-specific length-weight data obtained from the RACE eastern Bering Sea database.

Values used for the constants A and B for walleye pollock are as follows:

A	B
0.000081670	2.963988
0.0000063161	3.010031
0.0000029701	3.167916
	A 0.0000081670 0.0000063161 0.0000029701

After converting weight in grams to metric tons (t), B_L was then apportioned to biomass at age using the age-length keys for each area.

Growth characteristics of walleye pollock were described with von Bertalanffy (1938) growth, curves fitted to age-length data.

The relative fishing efficiencies of the Russian bottom sampling net and the standard U.S. 83-112 sampling net were evaluated by comparing the CPUE trawled for each species caught. One net was determined to have a different catchability coefficient than the other when the distribution of CPUE values were found to be statistically different-based on a Bayesian approach described by Geisser and Eddy (1979).

RESULTS OF THE SURVEY

The <u>Novokotovsk</u> completed 345 trawl hauls including 60 comparative trawl sets. In addition to standard haul, position, catch, and sea water temperature information, approximately 52,000 length measurements were recorded from fish species of interest (Table 3). Approximately 550 pollock otolith pairs were collected and preserved.

Table 3. --Number of length frequencies collected aboard the <u>Novokotovsk</u> by species and area during the 1990 cooperative U.S. -Russian bottom trawl survey of the Bering Sea shelf.

1											
· · · · ·	Region										
Species	Standard U.S. shelf	Northern shelf	Western shelf	Total							
Walleve pollock	15 781	1.417	3.477	20.669							
Pacific cod	1,812	205	954	2,971							
Yellowfin sole	11,306	2,026	67	13,399							
Hippoglossoides spp.	4,585	369	1,004	5,958							
Pacific halibut	523	6	44	573							
Alaska plaice	3,789	1,424	297	5,510							
Atheresthes spp.	2,692	0	0	2,692							
Misc. species	116	180		296							
Total	40,604	5,621	5,843	52,068							

^{*} Includes rex sole, northern rockfish, and saffron cod.

Environmental Conditions

During May-June, sea water surface temperatures ranged from 0.8° C to 10.1° C in the survey area. Surface temperatures were

generally lowest in the shallow waters of the Alaska mainland inshore area and increased westward as the survey proceeded (Fig 3). The warmest sea surface temperatures were observed off the southern waters of the Siberian coast during mid-July when the survey was completed.

Bottom temperatures ranged from -1.8° C to 4.8° C with the warmest waters located in Bristol Bay, the southeastern Bering Sea, and the far western area off the coast of Siberia (Fig. 4). A large mass of subzero water was encountered in the northern portion of the study region extending from the Gulf of Anadyr south through the central portion of the eastern Bering Sea. The overall mean bottom temperature was 1.0° C. The standard U.S. shelf had the warmest bottom temperaturesaveraging 1.7° C while the north shelf was coldest at -0.6° C. The combined western subareas were also relatively cold with a mean bottom temperature of 0.2° C primarily due to the cold water mass located in subareas 14 and 15.

Comparative Trawl Experiment

The Novokotovsk completed 30 paired comparative sets using the Russian sampling net and the standard U.S. 83-112 bottom trawl. Ten comparative sets were conducted at each of three sampling sites in the southeastern Bering Sea (Fig. 1).

Comparison of the catch rates (standardized to kg/ha trawled) between sampling nets indicated that the U.S. 83-112 sampling net was more effective in capturing Pacific cod

bottom trawl survey of the Bering Sea shelf.

(G. macrocephalus), Tanner crabs (Chionoecetes bairdi and c. opilio), blue king crab (Paralithodes platypus), starfish, and most other invertebrates. The catch efficiency for invertebrates was probably increased by the 0.61 m footrope chain extensions that enhanced the 83-112 trawl's ability to tend bottom and therefore improved the sampling efficiency for species situated directly on the seabed. The Russian net was not equipped with these extensions and apparently did not tend bottom as well. Although results showed similarities in catch efficiencies between these sampling nets for many species, adjustments to catches were not made primarily because of the relatively small number of comparative tows at each sampling site. They do, however, suggest strong similarities in fishing efficiencies between sampling nets when used aboard the Novokotovsk for some species as shown in Table 4. It should be noted that the R/V

Table 4. --Mean catch rates of the Russian trawl and the U.S. 83-112 trawl for principal species from the comparative trawling experiment conducted during the 1990 cooperative U.S. -Russian bottom trawl survey of the Bering Sea shelf.

	Hauls with	catch	Mean CPUE (kg/ha)	Geisser and Eddy			
•	٠.			1	Catch	<u>Statistic</u>		
<u>Specie</u>	<u>Russian net</u>	83-112	Russian net	83-112	ratio	<u>D</u> 1	D ₂	
Walleve pollock	30	30	98.773	127.516	.774599	1805828.0	1855374.0	
Pacific cod*	30	30	27.188	43.560	.624143	101370.1	100592.8	
Yellowfin sole	20	20	25,690	26.361	.974540	107566.9	111300.9	
Rock sole	30	30	93.862	79.240	1.184530	633074.0	651660.3	
Hippoglossoides spp.	. 29	27	15.776	16.406	.961599	19332.7	19998.7	
Alaska plaice	18	. 17	2.430	2.670	.910086	1413.0	1461.2	
Atheresthes spp.	15	18	4.213	5.279	.798090	3221.2	3315.0	
Pacific halibut	18	18	2.359	2.190	1.076770	536.3	554.5	
Tanner crab								
C. <u>bairdi</u> *	30	30	3.693	6.653	.555116	1699.4	. 1617.8	
C. opilio*	21	20	3.840	6.393	.600764	2618.2	2604.7	
Red king crab	15	[′] 18	2.165	3.195	.677694	1192.5	1217.0	
Blue king crab*	7	8	126 ;	.423	.298112	31.4	31.1	

*Geisser and Eddy (1979) test indicates a significant difference between sampling net CPUE.

<u>Novokotovsk</u> is over 3 times larger than the vessels used in the U.S. bottom trawl survey. Differences in fishing efficiencies using the 83-112 bottom trawl aboard the <u>Novokotovsk</u> and the smaller U.S. survey vessels is unknown. Vessel logistics and time limitations prevented conducting side-by-side trawling experiments between the U.S. and Russian vessels.

Relative Importance of Major Taxonomic Groups During the 1990 cooperative survey, 95 fish species representing 20 families were consistently identified (Table 5). Forty-six invertebrate species were identified from the catches. Some invertebrate species were not completely sorted and identified during the sampling procedure because of time limitations. Many invertebrates were subsequently grouped in broader taxonomical categories such as family, order, and phylum or recorded as "other invertebrates." As a result, some of the more specific invertebrate categories may be underestimated.

The total biomass of fish and invertebrates combined in the overall survey area was estimated at 16.5 million t (Tables 6 and. 7). Of this, nearly 74% (12.3 million t) of the biomass occurred in the standard U.S. shelf, 8% (1.3 million t) in the north shelf area, and 18% (3.0 million t) in the western area. Fish--The total biomass of all fish species sampled was estimated at 11.6 million t and accounted for 69.1% of the total catch of fish and invertebrates combined (Table 6). Total fish catch rates. frequently exceeded 400 kg/ha trawled in the standard

Table 5. --Mean CPUE (kg/ha) of fish species encountered during the 1990 U.S.-Russian cooperative groundfish survey of the Bering Sea.

,	•	Standard				
.		U.S.	North	Western	areas	
Common Name	Scientific Name	shelf	shelf	shelf	combined	
Family Squalidae					_	
Spiny dogfish	<u>Squalus</u> acanthias	0.004	•	-	0.002	
Family Rajidae					-	
Alaska skate	<u>Bathyraja parmifera</u>	4.669	0.225	1.356	3.173	
Aleutian skate	Bathyraja aleutica	0.870	-	0.299	0.593	
Skate unident.	Rajidae unident.	0.142	-	-	0.087	
<u>Bathyraja</u> unident.	<u>Bathyraja</u> sp.	0.087	-	-	0.053	
Okhotsk skate	Bathyraja violacea	0.044	-	0.079	0.043	
Bering skate	<u>Bathyraja</u> interrupta	0.002	-	-	0.001	
Family Clupeidae						
Pacific herring	Clupea pallasii	2.005	0.062	0.924	1 173	
American shad	Alosa sapidissima	0.006			0.004	
Family Osmeridae				•		
Capelin	Mallotus villosus	0.626	0 474	0.058	0 474	
Eulachon	Thaleichthys pacificus	0.018	-	<0.001	0.011	
Family Gadidae						
Walleve pollock	Theragra chaicogramma	68 050	2/ 10/	12 030	5/ 820	
Pacific cod	Gadus macrocenhalus	14 167	2 074	20 717	13 257	
Arctic cod	Boreogadus saida	0 146	1 230	0 458	0 /51	
Saffron cod	Eleginus gracilis	<0.001	0.119	<0.001	0.022	
Family Zoarcidae	· · · · · ·					
Marbled eelpout	lycodes paridens	0 515	0 357	0 371	0 /74	
Wattled eelpout	Lycodes palearis	0.276	0.1/8	0.271	0.430	
Shortfin eelpout	Lycodes brevines	0.202	0.140	0.337	0.204	
Lycodes unident.	Lycodes sp	0.202	0.020	0.000	0.141	
Gymnelus unident.	Gymnelus sp.	-	<0.001	<0.003	<0.001	
Eelpout unident.	Zoarcidae		0.00/	10.001	<0.001	
Saddled eelput	Lycodes mucosus		<0.004	0 002	<0.001	
Fish doctor	Gymnelus viridis	•		0.002	<0.001	
Polor eelpout	Lycodes turneri	-	<0.001	0.004	0.001	
Family Scorpagnidae			. X			
Northern rockfish	Sebastes polyspinis	0 49/	0.000		0 / 10	
Dusky rockfish	Sebastes ciliatur	0.004	0.009	-	0.410	
Pacific ocean perch	Sebastes elutus	0.013	0.001		0.005	
Rougheve rockfish	Sebastes aleutianus	0.009	0.001	-	0.005	
Rockfish unident.	<u>Sebastes</u> sp.	<0.001	-	0.001	<0.001	
Comily Hoversonides	·					
Whitespotted greenling	Keyngnommer stallari	0.01/	0.007	-0.004		
Atka mackaral	Plaurogrammic monontonycius	<0.014	0.005	<0.001	0.009	
Hexagrammos unident		0.007	-	0.044	0.009	
Kelp greenling	<u>Hexagrammos</u> sp. <u>Hexagrammos</u> <u>decagrammus</u>	<0.002			<0.001	
Family Anonionomatidae						
Sablefish	Anoplopoma fimbria	0.002	· -	•	0.001	
Family Cottidae				9		
Great Sculpin	Nyoyocenhalus polyacanthacantalua	0 405	0 504	2 609	0 005	
Plain Sculpin	Myoyocephalus inch	0.405	0.370	2.390	0.000	
Yellow Irish Lord	Hemitrinidotus iordani	0.734	U.O/Y	0 5/8	0.747	
Armorhead sculpin	Gymnocanthus caleatus	0.000	_	0, 340 9 194	0.404	
Nyoxocephalus unident	Nyoxocephalus sp	0.020	0 101	2.12D	0.443	
Warty sculpin	Myoxocephalus versionsus	0.281	0.101	0.270	0.203	
	The second secon	0.401	0.070	0.301	0.230	

23

Table 5. --Continued.

	· · · ·	Standard	. 1	ALL	
· · · · ·	1. A.	U.S.	North	Western	areas
Common Name	. Scientific Name	shelf	shelf	shelf	combined
	Melletes penilie	0 173	0 211	0 066	, 0 150
Bigmouth couldin	Hemitripterus bolini	0.175		0 200	0 154
Bignouth sculpin	Compensative pictilling	0.105	0.037	0.200	0.075
	Gymocanthus pistittiger	0.070	0.00/	0.025	0.075
inorny sculpin	Icelus spiniger	<0.030	0.004	0.025	0.025
Scissortail sculpin	Irigiops metoplas		-	0.094	0.014
<u>Gymnocanthus</u> unident.	<u>Gymnocantnus</u> sp.	0.026	-	0.01/	0.016
Spinyhead sculpin	Dasycottus setiger	0.019	. 0.010	0.074	0.014
Ribbed sculpin	<u>Iriglops</u> <u>pingeli</u>	0.004	0.010	0.030	0.011
Arctic staghorn sculpin	<u>Gymnocanthus</u> <u>tricuspis</u>	0.004	0.015	0.019	0.009 /
Darkfin sculpin	Malacocottus kincaidi	0.004		0.008	0.004
Speckled sculpin	Triglops scepticus	0.005	-	0.002	0.003
Pacific hookear sculpin	Artediellus pacificus	<0.001	- · ·	0.016	0.003
Smoothcheek sculpin	<u>Eurymen</u> <u>gyrinus</u>	-	-	0.016	0.003
Irish Lord unident.	<u>Hemilepidotus</u> sp.	0.002	• • <u>`</u>	•	0.001
<u>Triglops</u> unident.	Triglops sp.	0.002	- ;	•	• 0.001
Sculpin unident.	<u>Cottidae</u>	0.002	-	6 - -	_ 0.001
Spatulate sculpin	Icelus euryops	0.001	•	0.005	0.001
Red Irish Lord	Hemilepidotus hemilepidotus	0.001		-	<0.001
Icelus unident.	Icelus sp.	<0.001	· /	· - ·	<0.001
Northern sculpin	Icelinus borealis	<0.001	1. <u>-</u>	· -	<0.001
Blackfin sculpin	Malacocottus kincaidi	<0.001	-	-	<0.001
Crested sculpin	Bleosias bilobus	-	0.003	-	<0.001
Antiered sculpin	Enophrys diceraus	-		0.004	<0.001
Evestade sculpin	Nautichthys pribilovius		-	0.005	<0.001
Artediellus unident	Artediellus sp	A	· · · ·	0.002	<0.001
Arteurettus anacht.	Arecorectus op.		the design of the	••••	•••••
Esmily Aconidae			· · ·		· . ·
		0 303	0.037	0.006	0 249
Sturgeon poacher.	Agonus activentities	0.01/	0.007	0.000	0.014
Sawback poacher	Sarritor Trenatus	0.014	0.005	0.025	0.014
Poacher Unident.		0.020	0.007	0 0 0 0 0	0.012
Aleutian alligatorrish	Aspidophoroides bartoni	, 0.005	0.005	0.022	0.008
Dragon poacher	Percis japonicus		<0.001	0.057	0.008
Bering poacher	<u>Occella</u> <u>dodecaedron</u>	0.003	0.002		0.002
Longnose poacher	Sarritor leptorhynchus	-		0.011	0.002
Arctic alligatorfish	<u>Aspidophoroides</u> <u>olriki</u>		0.001	0.005	0.001 .
Fourhorn poacher	<u>Hypsagonus</u> <u>guadricornis</u>		-	0.004	<0.001
Tubenose poacher	<u>Pallasina</u> <u>barbata</u>	0.001	-	-	<0.001
				2 - A	<u>.</u>
Family Cyclopteridae				1.	
Dusky snailfish	Liparis gibbus	0.072	0.021	0.155	0.080
Liparis unident	Liparis sp.	0.020	0.062	0.226	0.069
Snailfish unident.	Cyclopteridae (Liparidinae)	0.015	0.092	.	0.026
Salmon snailfish	Careproctus rastrinus	0.016	0.010	0.014	0.015
Pacific spiny lumpsucker	Eumicrotremus orbis	-		0.012	0.002
Smooth Lumpsucker	Antoryclus ventricosus	0.002	-	-	0.001
Bound Lumosucker	Eumicrotremus birulai	-		. 0.006 .	0.001
Forktail orailfich	Careproctus furced lus	• · · · ·	·	0.006	0 001
Platabad anailfich	Castallichthys evaluation	· _		0.002	<0.001
		<0.001		0.002	<0.001
Lareproctus Unident.	<u>careproctus</u> sp.	NO.001	· - · ·		10.001
		•	• •		
ramily inichodontidae	•	0.07/			
Pacific sandfish	Irichodon trichodon	0.036	-	-	0.022
	·				
Family Bathymasteridae	· · · · · ·	·			
Searcher	<u>Bathymaster</u> <u>signatus</u>	0.052	0.042	0.012	0.034
			•		
Family Anarhichadidae					
Bering wolffish	<u>Anarhichas</u> <u>orientalis</u>	0.013	0.046	•	0.017
· · · ·					
					1

Table 5. --Continued.

		Standard U.S.	North	Western	All areas	
Common Name	Scientific Name	shelf	shelf	shelf	combined	
Family Stichaeidae					_	
Daubed shanny	<u>Lumpenus</u> macul <u>atus</u>	0.003	0.002	0.008	0.004	
Slender eelblenny	Lumpenus fabricii	0.002	0.002	<0.001	0.002	
<u>Lumpenus</u> unident.	Lumpenus sp.	0.001	<0.001	-	<0.001	
Stout eelblenny	Lumpenus medius	0.001	0.020	0.038	0.012	
Pighead prickleback	Acantholumpenus mackayi	<0.001	-	-	<0.001	
Snake prickleback	Lumpenus sagitta	-	<0.001	• ·	<0.001	
Fourline snakeblenny	Eumesogrammus praecisus	-	-	0.027	0.005	
Arctic shanny	Stichaeus punctatus	• .	· -	0.002	<0.001	
<u>Chirolophis</u> unident.	Chirolophis sp.	-	-	<0.001	<0.001	
Family Countsconthodidso						
Duest unmouth	Lyconactes algutansis	<0.001			<0.001	
	Lyconectes atentists	10.001		· .	10.001	
Family Zaprocidae				'		
Prowfish	Zaprora <u>silenus</u>	0.025	0.003	•	0.016	
Family Ammodytidae		· · ·	•			
Pacific sand lance	Ammodytes hexapterus	0.008	0.001	0.030	0.011	
					.»	
Family Pleuronectidae		53 4 3 4		A 477	77 500	
Tellowin sole	<u>Pleuronectes</u> <u>aspera</u>	52.421	7.682	0.133	35.522	
ROCK SOLE	<u>Pleuronectes</u> <u>bilineata</u>	28.142	0.240	1.274	17,520	
Alaska plaice	<u>Pleuronectes</u> <u>quadrituberculatus</u>	14.662	7,1/1	3.381	10.986	
Flathead sole	<u>Hippoglossoides</u> <u>elassodon</u>	6.888	0.020	0.139	4.246	
Arrowtooth flounder	Atheresthes stomias	4.865	-	0.017	2.980	
Pacific halibut	<u>Hippoglossus</u> <u>stenolepis</u>	2.153	0.021	0.576	1.438	
Bering flounder	<u>Hippoglossoides</u> robustus	0.300	0.542	1.838	0.657	
Kamchatka flounder	Atheresthes stomias	0.656		0.137	0.429	
Longhead dab	<u>Pleuronectes</u> proboscidea	0.499	0.157	0.004	0.335	
Starry flounder	<u>Platichthys</u> <u>stellatus</u>	0.410	0.024	-	0.255	
Greenland turbot	<u>Reinhardtius</u> <u>hippoglossoides</u>	0.068	0.040	0.225	0.095	
Rex Sole	<u>Glyptocephalus</u> <u>zachirus</u>	0.117	-	•	0.071	
Sakhalin sole	Pleuronectes sakhalinensis	0.004	0.022	0.181	0.043	
Butter sole	<u>Pleuronectes</u> isolepis	0.007	-,	-	0.004	
Dover sole	Microstomus pacificus	0.002	-	-	0.001	
<u>Pleuronichthys</u> unident.	<u>Pleuronichthys</u> sp.	<0.001	-	-	<0.001	

Table 6.--Biomass estimates for major fish species and fish groups taken during the 1990 cooperative U.S.-Russian bottom trawl survey of the Bering Sea shelf.

							···	· .	Estimated	Biomass b	y <u>Subare</u>	a (t)				- .
	Estimated to biomass (t)	and	Proport of tota	tion It	· .	Standa	rd U.S. she	<u>elf</u>	· · · · ·	No	<u>rth sheli</u>	F	Wes	tern shelf	<u> </u>	
Taxon	95% confide interval	ence	animal biomass	s ^b 1	2	3	4	5	6	7	8	9	14	15	16	
Gadidaa (cods)		• •				-	-	· ·								-
	4 152 438 +	279	25 29	121 227	52 441	.48 000	114 241	54 004	3 117 751	. 2/ 220	E 104	710 747	07 07/	175 0/7		
Pacific cod	1 003 821 +	25%	6 12	62 050	25 047	171 028	100 084	51 378	2,117,331	3 071	3,100	210,367	01,000	123,943	440,010	
Other cods	35,853 +	41%	0.2%	5	22	0	6 758	0,5,0		4 914	14 036	<i>LL</i> ,411	Q 845	0.	2/0	
Total cods	5,192,111 <u>+</u>	23%	31.5%	184,187	78,630	640,827	452,105	108,284	2,352,504	32,254	22,720	332,848	147,541	209,962	630,248	
Scorpaenidae (rockfish) . :	-	· ·			-					•	, •. ·				• .
Pacific ocean perch	403 <u>+</u>	218%	<0.1%	· 0.	. 0	0	- 0	403	0	. 0	0	. 0	· 0	. 0	0	
Other rockfish	32,694 +	213%	<0.1%	104	0	20	0	32,309	243	0	0	0	0	0	17	
Total rockfish	33,096 <u>+</u>	213%	<0.1%	104	. 0	20	0	32,712	243	ō	<u> </u>	0	Ō	ō	17	
Pleuronectidae (flatfi	sh)		• •			· · · · .		1 .	· · · ·	•		· · ·	•			
Yellowfin sole	2,539,008 <u>+</u>	. 23%	15.4%	1,152,022	470,576	642,252	164,104	.0	144	107,290	574	. 0	. 93	0.	1,954	
Rock sole	1,327,016 <u>+</u>	41%	8.0%	465,448	92,400	281,050	401,740	1,834	61,592	2,656	232	488.	309	2,333	16,934	
<u>Hippoglossoides</u> spp.	<u>371,399 +</u>	29%	2.2%	11,998	1,136	157,412	27,070	50,380	85,126	515	4,114	3,269	23,925	6,069	386	
Alaska plaice	832,069 <u>+</u>	28%	5.0%	119,938	179,990	123,402	238,904	0	17,209	99,209	1,456	27	15,150	9,908	26,875	,
Atheresthes spp.	258,222 +	29%	1.6%	142	0	54,845	2,406	123,565	94,899	. 0	0	0	0	1,981	386	
Greenland turbot	109 900 1	20%	<u.1%< td=""><td>1 U</td><td>U</td><td>- U</td><td>432</td><td>0</td><td>2,724</td><td>0</td><td>156</td><td>406</td><td>297</td><td>3,061</td><td>99 ±</td><td>_ N</td></u.1%<>	1 U	U	- U	432	0	2,724	0	156	406	297	3,061	99 ±	_ N
Other flatfich	100,077 <u>+</u>	<u>64</u> / 19	0.7%	10,149	6,090	34,020	9,540	0,001	24,437	249	205	· 50	1,215	1,594	6,038	U 1
Total flatfish	5 497 622 +	172	77 22	1 802 962	754 588	1 275 506	<u> </u>	187 766	287 (27	2,574	283	<u> </u>	<u>- 8/</u>		2,751	
	<i>,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,</i>		33.24	1,002,702	154,500	1,213,300	044,577	107,704	201,421	212,492	0,010	4,240	41,070	24,947	· ɔɔ ,42 <code>ɔ</code>	
Clupeidae				, , , ,	22 (00											-
Pacific nerring	00,010 <u>+</u>	22%	0.5%	2,033	22,080	2,003	19,129	2	15	18,176	9,981		19	. 0	14,179	•
Cottidae (sculpins)	281,979 <u>+</u>	24%	1.7%	44,896	10,543	14,569	66,910	2,848	16,286	20,689	5,007	1,481	13,428	23,249	62,073	
Zoarcidae (eelpouts)	64,491 <u>+</u>	22%	0.4%	33	. 0	3,249	27,692	1,060	14,355	323	5,370	1,887	5,134	5,319	70	
Osmeridae (smelts)	36,715 <u>+</u>	55%	0.2%	17,551	3,249	7,840	422	797	, 7	4,040	1,909	. 0	839	4	57	
Agonidae (poachers)	22,599 <u>+</u>	22%	0.1%	5,987	5,104	5,879	2,775	177	327	565	46	78	191	514	957	
0		774	.0. 1.1		` - /		F 400				·	··· ···			· ·	
Cyclopteridae (snailti	sn) 14,009 <u>+</u>	21%	KU, 1%	0.0	70	42	5,100	. 0	578	251	2,331	17	5,055	614	789	
Rajidae (skates)	299,365 <u>+</u>	. 35%	1.8%	6,538	0	35,122	37,479	67,537	122,899	0	1,178	1,977	4,054	12,418	10,163	۰.
Other fish	<u>11,375</u> +	35%	<0.1%	2,808	768	439	226	2,159	1,487	760	276	21	670	434	_1,406	
Total fish	11,543,137 <u>+</u>	14%	69.9%	2,067,728	875,638	1,985,499	1,456,217	403,345	2,796,129	289,549	55,635	342,550	218,006	277,461	775,380	

^aRounding accounts for minor discrepancies between suns of subareas and total survey area, and between suns of taxonomic subgroups and major groups. ^bProportion of total estimated biomass, fish and invertebrates combined, for the total survey area (Total estimated biomass = 16,539,353 t). Table 7.--Biomass estimates for major invertebrate species and invertebrate groups taken during the 1990 dooperative U.S.-Russian bottom trawl survey of the Bering Sea shelf.

· ,							,	Estimat	ed Riomass	by Subare	· (t)			
	Estimated total biomass (t) [®] and	mated total Proportio mass (t) and of total		nStandard U.S. shelf						North shel	<u>f</u>	h	lestern sh	el f
Taxon	interval	biomass ^b	1	2	3	4	5	6	7	8	9	14	15	16
Crustacea		·		_ <u>. </u>				:						<u> </u>
<u>Chionoecetes</u> sp. (snow crab)	1,269,756 <u>+</u> 21%	7.7%	16,549	11,496	94,936	427,660	33,273	248,837	117,900	104,942	22,719	107,282	66,970	17, 192
<u>Paralithodes</u> sp. (king crab)	62,257 <u>+</u> 50%	0.4%	8,919	53	35,953	2,138	0	• 0	46	32	. 0	3,510	560	11,045
Erimacrus isenbecki (hair crab)	<u>1,129 ± 85%</u>	<0`_ 1%	345	0	244	540	0	0	0	0	0	0	. 0	0
Paguridae (hermit crab)	3,513 <u>+</u> 148%	<0.1%	1,095	2,416	-	•	- *	-	.	-	-	-	-	
Other crab	49,129 + 28%	0.3%	10,425	8,532	6,253	5,011	269	394	1,423	202	119	6.783	631	9.086
Total crab	1,385,845 + 19%	8.4%	37,361	22,498	137,414	435,349	33,542	249,232	119,376	105,167	22,837	117,577	68,161	37,323
Shrimps.	24,439 <u>+</u> -36%	0.1%	566	670	15	607	894	5,046	2,679	1,540	652	4.033	2.214	5.523
Other crustaceans	<u> 10,413 +</u> 197%	<0.1%	<u> </u>	<u> </u>	<u> </u>	-				-	-	696		9.717
Total crustaceans	1,420,698 ± 19%	8.6%	37,927	23,168	137,429	435,956	34,436	254,278	122,055	106,716	23,489	122,306	70,375	52,563
Mollusca ^c	·					·							-	
Gastropoda (snails)) 73,178 <u>+</u> 56%	0.4%	703	2,786	29,054	5,062	2,982	20,065	11,310	482	0	695	39	0
Pelecypoda (bivalve	es) 2,326 ± 143%	<0.1%	0	. 0	621	0	121	52	- O	1,532	Ō	0	Ō	ŏ
Squids	1,547 <u>+</u> 178%	<0.1%	0	0	0	0	147	87	- 0	. 0	0	0	Ō	1,314
Other molluscs	13,864 <u>+</u> 79%	<0.1%	· · 0	0	0	7,996	. 0	0	0	5,896	0	0	0	0
Octopuses	$3,214 \pm 70\%$	<0.1%	0	0	596	<u>318</u>	0	<u>1,807</u>	33	69	0	392	0	0
Total molluscs	94,130 <u>+</u> 47%	0.6%	703	2,786	30,271	13,376	3,249	22,012	11,343	7,951	ō	1,086	39	1,314
Echinodermata														
Asteroidea (starfish)	1,386,500 <u>+</u> 23%	8.4%	463,127	130,139	225,084	127,204	3,090	211,657	93,431	5,571	44,915	11,405	18,424	52,453
Ophiuroidea	304,627 ± 55%	1.8%	219	1,035	16,575	10,396	29,215	57,080	2,623	85,731	1,502	91,949	1.669	6.632
(brittlestars)	· ·		-	-				·	· ·	•			• • • • •	-,
Echinoidea (sea urchin)	620,208 <u>+</u> 87%	3.8%	0	0	3,157	1,153	347	. 758	13	0	. 8	22,871	203,751	388,150
Holothuroidea (sea cucumbers)	<u>49,923</u> + 157%	0.3%			737	<u>1,765</u>	<u> </u>	<u> </u>	•••••••	<u>-</u>		46,564	:	857
Total echinoderms	2,361,257 <u>+</u> 27%	14.3%	463,346	131,174	245,553	140,518	32,652	269,495	96,067	91,303	46,425	172,789	223,844	448,091
Ascidiacea	160,453 <u>+</u> 51%	1.0%	17,428	15,054	36,307	34,528	0	11	20,985	0	0	33,384	0	2,757
Coelenterata	118,240 <u>+</u> 31%	0.7%	1,708	829	26,705	9,732	34,166	3,232	231	7,411	895	10,127	4,299	18,906
Other invertebrates	<u>831,669 +</u> 39%	4.5%	31,712	14,082	114,396	55,686	959	27,335	42,672	27,741	<u> </u>	121,102	8,400	<u>386,976</u>
Total invertebrates	4,986,447 <u>+</u> 14%	30.2%	552,824	187,093	590,660	689,796	105,462	576,362	293,353	241,122	71,416	460,794	306,958	910,606

^aRounding accounts for minor discrepancies between sums of subareas and total survey area, and between sums of taxonomic subgroups and major groups. ^bProportion of total estimated biomass, fish and invertebrates combined, for the total survey area (Total estimated biomass = 16,539,353 t).

'Biomass for pagurids, crustaceans, gastropods, pelecypods, and echinoderms may be underestimated since some were classified as other invertebrates during the sampling procedures.

U.S. area and were generally less than 125 kg/ha in the north shelf area (Fig. 5)Fish were also found in relatively low levels of abundance in the Gulf of Anadyr region of the western shelf. About 83% (9.6 million t) of the total fish biomass was located in the standard U.S. shelf. Another 6% (0.7, million t) were present in the north shelf area and 11% (1.3 million t) in the western area. Six fish families including Pleuronectidae (47.6%), Gadidae (45.0%), Rajidae (2.6%), Cottidae (2.4%), Clupeidae (0.8%), and Zoarcidae (0.6%) contributed 99% of the total estimated fish biomass.

Invertebrates -- The combined invertebrate biomass accounted for 30% or nearly 5.0 million t of the total estimated biomass of fish and invertebrates (Table 7). Members of the phylum Echinodermata were the most frequently encountered invertebrate category with an estimated biomass of approximately 2.4 million t or nearly-one-half of the overall invertebrate biomass and about Starfish were 14% of the combined fish and invertebrate biomass. the major component of the echinoderm assemblage. Sea urchins were the second most abundant echinoderm group with highest concentrations located in the western shelf area. Crustaceans, primarily represented by tanner crab, comprised 28.5% of the total estimated invertebrate biomass. The molluscs, ascidians, and coelenterates combined comprised about 2.3% of the total invertebrate biomass. Gastropods were the most often encountered members of the phylum Mollusca. Gastropods and other members of the phylum Mollusca were likely the most undersampled because many species in this phylum tend to burrow into the sea bottom below the effective path of the sampling trawl.

Figure 5.--Distribution and relative abundance in kg/ha of total fish sampled during the 1990 cooperative U.S.-Russian bottom trawl survey of the Bering Sea shelf.

Fish Groups

Pleuronectidae (flatfishes)

Fifteen species of flatfish were identified during the survey (Table 5). They accounted for 5.5 million t or 48% of the entire estimated fish biomass. Approximately 94% of the total flatfish biomass was located in the standard U.S. shelf area with 4% in the north shelf area and 2% in the western area (Table 6). Yellowfin sole was the major component of this group comprising 46% of the total flatfish biomass estimate. Yellowfin sole were primarily concentrated in the standard U.S. shelf area. Rock sole was the second most abundant species accounting for 24% of the flatfish biomass estimate followed by Alaska plaice (15%), <u>Hippoglossoides</u> spp. (7%), and <u>Atheresthes</u> Spp. (5%).

Gadidae (codfishes)

The family Gadidae was represented by four species with a combined estimated biomass of 5.2 million t. This group was widely distributed throughout the survey area with approximately 73% (3.8 million t) located in the standard U.S. shelf area, 8% (0.4 million t) found in the north shelf area, and the remaining 19% (1 million t) located in the western shelf region (Table 6). Walleye pollock was by far the most abundant gadid species comprising 80% by weight of this family followed by Pacific cod (19%): Arctic cod (Boreogadus saida) and saffron cod (Eleginus qracilis) comprised the remaining 1% with highest catch rates encountered in the north shelf area (Table 5).

Rajidae (skates)

Four species of skates were identified during the survey (Table 5). The Alaska skate (<u>Bathyraja parmifera</u>) was the most commonly encountered skate species in the standard U.S. and western areas and was the only skate species recorded in the north shelf area. Skates were most abundant in subareas 5 and 6 at depths greater than 100 m (Fig. 6). Skates were the third most abundant fish group (following the gadids and pleuronectids) and had an estimated biomass of nearly 300,000 t. Ninety percent of the entire skate biomass was located in the standard U.S. shelf.

Cottidae (sculpins)

The family Cottidae was the most diverse fish group encountered with 24 species identified (Table 5). Sculpins were broadly distributed throughout the survey area and were encountered at most sampling sites (Fig. 7). This group accounted for approximately 2% (282,000 t) of the total estimated fish biomass. Members of the genus <u>Myoxocephalus</u> accounted for most (62%) of the sculpin biomass.

Other fishes

Sixteen additional families were encountered in the survey area (Table 5). Together these families accounted for 272,000 t or 2% of the entire estimated fish biomass (Table 6). The dominant families included the Clupeids (herring), Zoarcids (eelpouts), Osmerids (smelts), and Agonids (poachers) (Figs. 8-11).

Figure. 6.--Distribution and relative. abundance in kg/ha of total skates sampled during the 1990 cooperative U.S.-Russian bottom trawl survey of the Bering Sea shelf.

Figure 7. --Distribution and relative abundance in kg/ha of total sculpins sampled during the 1990 cooperative U.S. -Russian bottom trawl survey of the Bering Sea shelf. ω 2

'Figure 8.--Distribution and relative abundance in kg/ha of Pacific herring. sampled during the 1990 cooperative U.S.-Russian bottom trawl survey of the Bering Sea shelf.

Figure 9. --Distribution and relative abundance in kg/ha-of total eelpouts sampled during the 1990 cooperative U.S. 'Russian bottom trawl survey of the Bering Sea shelf.

Figure 10. --Distribution and relative abundance in kg/ha of total smelts sampled during the 1990 cooperative U.S.-Russian bottom trawl survey of the Bering Sea shelf.

ы б 37.

Abundance, Distribution, and Size Composition of Principal Fish Species

Walleye pollock

Dis<u>tribution and abundance</u>--Walleye pollock was the most abundant fish species encountered occurring at 269 (98%) of the stations sampled (Fig. 12). Walleye pollock comprised 25% of the total combined biomass estimate of fish and invertebrates and 36% of the total. fish biomass (Table 6). The overall mean catch rate was nearly 55.0 kg/ha trawled (Table 8). Concentrations were greatest in the 100-200 m depth zone in subareas 6 and 9 with mean CPUE values of 223.9 kg/ha and 268.3 kg/ha, respectively. Pollock were also encountered in relatively high abundance in western shelf subarea 16 at 110.4 kg/ha trawled. Catch rates were lowest in north shelf subareas 7 and 8, averaging 3.3 kg/ha and 0.9 kg/ha, respectively. Although juvenile walleye pollock (< 20 cm fork length) were encountered throughout the survey, they were most abundant in subarea 6 at water temperatures about 0° C with catches exceeding 100 kg/ha trawled (Fig. 13).

The total biomass of walleye pollock was estimated at 4,162,000 t with population numbers exceeding 12.6 billion fish (Table 8). Approximately 3,153,000 t or 76% of the total biomass was located in the standard U.S. shelf region. Nearly 51% of the overall biomass was located in subarea 6. The north shelf area accounted for 340,000 t (8%) of the remaining biomass with the western shelf containing 669,000 t (16%).

Figure 12.--Distribution and relative abundance in kg/ha of walleye pollock sampled during the 1990 cooperative U.S.-Russian bottom trawl survey of the Bering Sea shelf.

Table 8.-Abundance estimates and mean size of, walleye pollock by subarea from the 1990 cooperative U.S.-Russian bottom trawl survey in the Bering Sea shelf.^a

	,	Mean	Estimated	Proportion	Estimated	Proportion	Mean	Bize
Subarea	Depth (m) interval	CPUE (kg/ha)	biomass (t)	of estimated biomass	population numbers	of estimated population	Weight (kg)	Length (cm)
1	•			· · · · · · · · · · · · · · · · · · ·			• •	
<u>U.S. sta</u>	<u>ndard shelf</u>			-	· .	· · · ·		
1	< 50	15.57	121.223	0.029	257.264.495	0.020	0.471	25.2
2	< 50	12.84	52,661	0.013	427,970,954	0.034	0.123	12.9
3	50 - 100	45.30	468,900	0.113	908.058.590	0.072	0.516	30.7
4	50 - 100	31.25	336,263	0.081 2	.117.600.756	0.167	0.159	18.2
5	100 - 200	14.67	56,906	0.014	168,816,073	0.013	0.337	25.6
6	100 - 200	223.91	2,117,351	0.509 5	,744,973,845	0.454	0.369	30.8
Subareas	combined	68.05	3,153,303	0.758 9	,624,684,713	0.761	0.328	27.0
North sh	elf	- 		· .			· · · ·	
· <i>'</i> 7	< 50	1, 11	24.270	0.006	228,963,698	0.018	0.106	12.1
8	50 - 100	0.91	5,106	0.001	537,427,861	0.042	0.010	8.6
· 9	100 - 200	268.30	310,367	0.075	462,741,394	0.037	0.671	44.2
Subareas	combined	24.20	339,743	0.082 1	,229,132,953	0.097	0.276	22.7
Western	<u>shelf</u>	•		· · ·		•		
14 -	· · · · · · · · · · · · · · · · · · ·	10 03	87 836	0 021	276 685 514	0 022	0 317	24 9
. 15	100 - 200	49 11	125 943	0.021	693 607 192	0.051	0 182	29.5
16	· · · · · · · · · · · · · · · · · · ·	110 41	445-613	0 107	823 859 705	0.065	0 541	41 6
10	~ 200		, T10,010	0.107		0.005	0.341	11.0
Subareas	combined	42.93	659,392	0.161 1	,794,152,411	0.142	0.328	33.9
All area	S	•						· · ·
combined		54.82	4,152,438	1.000 12	,647,970,076	1.000	0.328	27.6
· · · · · ·								<u> </u>

Differences in totals and sums of biomass and population numbers by subarea are due to rounding.

39

).

.

 $x_{i} = x_{i}$

Figure 13. --Distribution and relative abundance in kg/ha of juvenile walleye pollock (<20 cm) sampled during the 1990 cooperative U.S.-Russian bottom trawl survey of the Bering Sea shelf.

Size composition -- Walleye pollock measured during the survey The mean length of ranged in size from 6 cm to 85 cm in length. waileye pollock for the total survey area was 27.6 cm (Fig. 14). The standard U.S. area was characterized by a bimodal length distribution with a high proportion (51%) of young fish in the 9 cm to 15 cm size range. Most of the remaining population sampled in the standard U.S. shelf were composed of adults ranging from 40 cm to 55 cm in length. The portion of the population in the north shelf area was primarily composed of Nearly 50% of juveniles with an overall mean-size of 22.7 cm. the pollock sampled in the north shelf area were less than 10 cm The overall mean size in the western shelf area was in length. 33.9 cm with no pronounced modes. Relatively few juveniles were encountered in the combined western shelf subareas where approximately 70% of the fish measured were over 20 cm in length. Juvenile walleye pollock were abundant in subareas 2, 4, 7, and 8 accounting for over 80% of the estimated population in those areas (Fig. 15). Few juveniles were encountered in subareas 9 and 16 where they represented less than 6% of the estimated population.

Age composition--The mean age for pollock sampled in the standard U.S. shelf was 3.7 years compared to 4.5 years in the western shelf. Over 50% of the pollock population numbers in the standard U.S. shelf were comprised of fish aged 0-1 (Fig. 16). A high proportion (nearly 30%) of the fish in the western shelf

Figure 14. --Estimated size composition of walleye pollock by region during the 1990 cooperative U.S. -Russian bottom trawl survey of the Bering Sea shelf.

Figure 15.--Estimated relative size composition of walleye pollock (sexes combined) by subarea during the 1990 cooperative U.S.-Russian bottom trawl survey of the Bering Sea shelf.

Figure 16. --Relative age composition of walleye pollock in the western shelf and standard U.S. shelf areas during the 1990 cooperative bottom trawl survey. Age-length keys were constructed from data collected by the <u>Novokotovsk</u> in the western shelf and AFSC age data collected in the standard U.S. shelf. These keys were applied to <u>Novokotovsk</u> length data from the respective areas.

area were also age 1 or less. Fish ages 6, 8, and 12 corresponding to the 1984, 1982, and 1978 year classes, respectively, were prominent on the standard U.S. shelf. These three year classes comprised 62% of the biomass of walleye pollock in this area (Fig. 17). These age classes were also prominant in the western shelf region in terms of biomass although fish 4 and 5. years old were also relatively abundant.

<u>Growth</u>--Von Bertalanffy growth curves fitted to age data for walleye pollock from the western shelf area indicated similar growth between sexes. Growth completion rates (K) were nearly equal although the asymptotic length was slightly higher for females (Fig. 18 and Table 9). Growth rates were similar between pollock. from the western shelf and the standard U.S. shelf.

Table 9. --Parameters of the von Bertalanffy growth curves for walleye pollock by sex from data collected in the western shelf area during the 1990 cooperative U.S.-Russian bottom trawl survey and from data collected during the independent 1990 AFSC bottom trawl survey of the standard U.S. shelf.

	Number of	Age	Length range	Pa	· .		
Sex	age readings	range	(Cm)	Γœ	K	t。	· ·
			<u> </u>				
West	ern shelf					· · · · · ·	
Male Fema	e 221 1e 296	1-20 1-26	20-74 20-77	67.7 69.9	0.16 0.17	-0.47 -0.20	, <u>.</u>
Stan	dard U.S. shelf				· · · ·		
Male Fema	e 573 le 623	1-18 1-22	15-78 16-79	70.0 74.9	0.14 0.14	-1.04 -0.86	
					· ·	1 C	

Figure 17.--Biomass estimates (metric tons) by age for walleye pollock as shown by age data collected from the western shelf area aboard the R/V <u>Novokotovsk</u> and AFSC age data from the standard U.S. shelf area.

Figure 18. --Von Bertalanffy growth curves for male and female walleye pollock, in the western shelf area as shown by age data collected aboard the R/V <u>Novokotovsk</u> during the 1990 cooperative U.S. -Russian bottom trawl survey of the Bering Sea shelf.

Pacific cod

Distribution and abundance--Pacific cod were recorded at 223 stations. Largest catches (>49.9 kg/ha trawled) primarily occurred at water depths greater than 50 m as shown in Figure 19. The overall mean catch rate was nearly 13.3 kg/ha trawled (Table 10). Greatest densities of Pacific cod were encountered in the western shelf area (20.7 kg/ha) followed by the standard U.S. shelf (14.2 kg/ha). Pacific cod were least abundant in the north shelf area with catch rates averaging 2.1 kg/ha.

The total Pacific cod biomass was estimated at 1,000,000 t with 65% of the biomass located in the standard U.S. area and 32% in the western shelf. The north shelf area accounted for only about 3% of the total biomass. Approximately 515,000 (51%) of the total estimated biomass was located in subareas 3, 4, and 6 combined. The total population of Pacific cod was estimated at 655.7 billion fish.

<u>Size composition</u> --The mean size of Pacific cod sampled in the entire survey area was 43.7 cm (Fig. 20). A much higher percentage (23%) of young fish less than 20 cm were found in the standard U.S. shelf compared to the western Bering Sea (5%). Pacific cod averaged 44.5 cm in length in the north shelf area. The length composition of Pacific cod by depth zone and subarea are summarized in Figure 21. The mean size increased with increasing depth. In the standard U.S. shelf area, mean size increased from 35.2 cm at depths less than 50 m (subareas 1 and 2) to 40.5 cm between 50 and 100 m (subareas 3 and 4) and 56.1 cm at depths greater than 100 m (subareas 5 and 6).

Figure 19.--Distribution and relative abundance in kg/ha of Pacific cod sampled during the 1990 cooperative U.S.-Russian bottom trawl survey of the Bering Sea shelf.

		Mean	Estimated	Proportion	Estimated	Proportion	Mean	size
Subarea	Depth (m) interval	CPUE (kg/ha)	biomass (t)	of estimated biomass	population numbers	of estimated population	Weight (kg)	Length (cm)
Standard	U.S. shelf							
1	< 50	8.09	62,959	0.063	48.879.959	0.075	1.288	36 5
2	< 50	6.32	25,947	0.026	31,445,275	0.048	0.825	33.5
3	50 - 100	16.61	171,928	0.171	116,954,242	0 178	1 470	40 1
4	50 - 100	10.14	109,084	0.109	88,346,090	0.247	1.235	41.1
5	100 - 200	13.24	51.378	0.051	13.965.970	0.021	3.679	63.1
6	100 - 200	24.87	235,153	0.234	84,564,584	0.129	2.781	54.9
Subareas	combined	14.17	656,450	0.654	384,156,121	0.698	1.709	43.4
North sh	elf							
7	< 50	0.42	3,071	0.003	6 828 117	0 010	0 450	-
8	50 - 100	0.64	3,579	0.004	2,968,116	0.010	1 206	43 2
9	100 - 200	19.43	. 22,477	0.022	12,179,321	0.019	1.846	44.8
Subareas	combined	2.07	29,127	0.029	21,975,554	0.034	1.325	44.5
<u>Western</u>	<u>shelf</u>		,					
14	< 100	5.69	49,840	0.050	32,889,420	0.050	1.515	43.1
15	100 - 200	32.76	84,019	0.084	32,163,215	0.049	2.612	54.1
´16	< 200	45.69	184,386	0.184	111,090,835	0.169	1.660	42.0
Subareas	combined	20.72	318,245	0.317	176,143,470	0.269	1.807	44.4
All area	8					· .		
combined		13.25	1,003,821	1.000	655,658,142	1.000	1.531	43.8

Table 10.--Abundance estimates and mean size of Pacific cod by subarea from the 1990 cooperative U.S.-U.S.S.R. bottom trawl survey of the Bering Sea shelf.

. 1

^a - indicates no sample or insufficient data ^b - Differences in totals and sums of biomass and population numb&s by subarea are due to rounding.

Figure 20. --Estimated size composition of Pacific cod by region during the 1990 cooperative U.S.-Russian bottom trawl survey of the Bering Sea shelf.

Figure 21. -- Estimated relative size composition of Pacific cod (sexes combined) by subarea during the 1990 cooperative U.S.-Russian bottom trawl survey of the Bering Sea shelf.

Yellowfin sole

Distribution and abundance--Yellowfin sole were the second most abundant fish species caught during the survey and were encountered at 158 stations (Fig. 22). The major portion of the sampled population was located in the inner shelf waters of the standard U.S. shelf area. Relatively few yellowfin sole were taken in the north shelf and western area. The overall mean catch rate for this species was 33.5 kg/ha trawled (Table 11). Mean CPUE values varied considerably between the standard U.S. shelf (52.4 kg/ha), north shelf (7.68 kg/ha), and the western shelf area (0.13 kg/ha). Greatest concentrations were observed at depths less than 50 m in subarea 1 (147.9 kg/ha) and subarea 2 (114.7 kg/ha).

The yellowfin sole biomass for the entire survey area was estimated at 2,539,000 t. Nearly 96% of, this total estimated biomass or 2,429,000 t was located-in the standard U.S. shelf with 45% in subarea 1 alone. Approximately 4% of the biomass was located in the north shelf area with less than 1% of the biomass in the western area. The total population of yellowfin sole in the survey area was estimated, at 10.6 billion fish.

Size composition--Yellowfin sole measured during the survey had an overall mean length of 25.8 cm (Fig. 23). Yellowfin sole were largest in the western shelf area averaging 32.1 cm in length and smallest in the north shelf area with a mean size of 23.3 cm. Yellowfin sole averaged 25.9 cm in the standard U.S. shelf where most of the population occurred. Mean size increased

Figure 22. --Distribution and relative abundance in kg/ha of yellowfin sole sampled during the 1990 cooperative U.S. -Russian bottom trawl survey of the Bering Sea shelf.

Table 11. -- Abundance estimates - and mean size of yellowfin sole by subarea from the 1990 U.S.-Russian cooperative bottom trawl survey of the Bering Sea shelf.^{a,b}

· · · · · ·		Mean	Estimated	Proportio	on Estimated	Proportion	Mean size	
Subarea	Depth (m) interval	CPUE (kg/ha)	biomass (t)	of estimat biomas	ted population s numbers	of estimated population	Weight (kg)	Length (cm)
		·			· · ·			 _
<u>Standard</u>	U.S. shelf		1			•		
- 1	< 50	147 94	1 152 002	0.454	5.078.690.402	0.478	0.227	25.4
2	< 50	114.70	470,576	0.185	2,298,018,285	0.216	0.205	24.0
3	50 - 100	62.04	642,252	0.253	2,177,661,186	0.205	0.295	28.8
4	50 - 100	15.25	164,104	0.065	549,014,387	0.052	0.299	28.0
5	100 - 200	0.00	0	0.000	0	0.000	. · · · · ·	_
6	100 - 200	0.02	144	<0.001	375,564	<0.001	0.383	· . – . ·
Subareas	combined	52.42	2,429,097	0.957	10,103,759,823	0.950	0.240	25.9
<u>North sh</u>	<u>elf</u>	<i>e</i> .	·	· · ·				· · · ·
7	< 50	14.73	107,290	0.042	518.828.663	0.049	0.207	23.3
8	50 - 100	0.10	574	<0.001	2,722,029	<0.001	0.211	
. 9	100 - 200	0.00	0	0.000	0	0.000	֥===	-
· · ·		·			The second se			
Subareas	combined	7.68	107,864	0.042	521,550,692	0.049	0.207	23.3
tie of own	-bolf	·		-			· · · ·	
Western	BUGIT	- · · ·	• • •	in a start star				
14	< 100	0.01	93	<0.001	375,671	<0.001	0.248	_
15	100 - 200	0.00	0	0.000.	. 0	0.000	-	· _
16	< 200	0.48	1,954	0.001	4,634,988	<0.001	0.422	32.1
Subareas	combined	0.13	2,047	0.001	5,010,659	<0.001	0.409	32.1
All area	9			•			,	
combined		33.52	2,539,008	1.000	10,630,321,175	1.000	0.239	25.8

^aO indicates fishing but no catch; - indicates no sample or insufficient data. ^bDifferencee in totals and sums of biomass and population numbers by subarea are due to rounding.

ហ ហ

~

Figure 23.--Estimated size composition of yellowfin sole by region during the 1990 cooperative U.S.-Russian bottom trawl survey of the Bering Sea shelf.

with increasing depth, ranging from 23.3 cm to 25.4 cm at depths less than 50 m (subareas 1, 2, and 7) to over 28.0 cm at depths of 50-100 m in subareas 3 and 4 (Fig. 24). Juveniles less than 20 cm were most abundant in subareas less than 50 m in the standard U.S. shelf while few juveniles were encountered in the western shelf.

Rock sole

Distribution and abundance--Rock sole were widely distributed throughout the survey area but were most highly. concentrated in the shallow portion of the standard U.S. shelf in Bristol Bay and around the Pribilof Islands (Fig. 25). The overall mean CPUE value was 17.5 kg/ha trawled (Table 12). Highest catch rates were observed in the standard U.S. shelf at 28.4 kg/ha with much lower catch rates occurring in the-north shelf area (0.2 kg/ha) and the western area (1.3 kg/h&). Major. concentrations were observed in the standard U.S. shelf at depths less than 100 m with CPUE values ranging from 59.8 kg/ha in subarea 1 to 22.5 kg in subarea 2. Rock sole abundance decreased sharply at depths over 100 m.

The biomass of rock sole for the entire survey area was estimated at 1,327,000 t (Table 12). Nearly 98% of the estimated. biomass was located in the standard U.S. shelf, primarily in the combined subareas of 1, 3, and 4. The total rock sole population in the survey area was estimated at 6.8 billion fish.

Figure 24. --Estimated relative size composition of yellowfin sole (sexes combined) by subarea during the 1990 cooperative U.S.-Russian bottom trawl survey of the Bering Sea shelf.

ហ ខ

Figure 25.--Distribution and relative abundance in kg/ha of rock sole sampled during the 1990 cooperative U.S.-Russian bottom trawl survey of the B&ring Sea shelf.

			Mean	Estimated	Proportion	Estimated	Proportion	Mean	size
	Subarea	Depth (m) interval	CPUE (kg/ha)	biomass (t)	of estimate biomass	d population numbers	of estimated population	Weight (kg)	Length (Cm)
,	Standard	U.S. shelf		· ·	· · ·	· · · · · · · ·			
	1	< 50	59.77	465,448	0.351	3,362,061,975	0.492	0.138	20.5
	2	< 50	22.52	92,400	0.070	675,184,771	0.099	0.137	18.5
	3	50 - 100	27.15	281.050	0.212	1,531,869,480	0.224	0.183	23.9
	4	50 - 100	37.33	401,740	0.303	970,449,138	0.142	0.414	31.3
	5	100 - 200	0.47	1.834	0.001	2,423,319	<0.001	0.757	
	6	100 - 200	6.51	61,592	0.046	125,613,743	0.018	0.490	32.8
<u>.</u>	Subareas	combined	28.14	1,304,064	0.983	6,667,602,156	0.975	0.196	22.9
	North she	elf				-			
	7	< 50	0.36	2,656	0.002	100,136,361	0.015	0.027	-
	8	50 - 100	0.04	232	<0.001	865,296	<0.001	0.268	. –
	9	100 - 200	0.42	488	<0.001	1,326,928	<0.001	0.368	· - ,
·	Subareas	combined	0.24	3,377	0.003	102,328,585	0.015	0.033	· · –
•	<u>Western</u>	<u>shelf</u>		-		·			
	14	< 100	0.04	309	<0.001	767.073	<0.001	0.403	_
	15	100 - 200	0.91	2.333	0.002	6.372.482	0.001	0.366	_
	16	< 200	4.20	16,934	0.013	59,356,139	0.009	0.285	22.5
	Subareas	combined	1.27	19,576	0.015	66,495,694	0.010	0.294	22.5
	All area combined		17.52	1,327,016	1.000	6,836,426,436	1.000	0.194	22.7

Table 12.--Abundance estimates and mean size of rock sole by subarea from the 1990 cooperative U.S. -Russian bottom trawl survey of the Bering Sea shelf.^{a,b}

^a - indicates no sample or insufficient data. ^b Differences in totals and sums of biomass and population numbers by subarea are due to rounding.

σ

õ

~

Size composition--Rock sole ranged in size from 6 cm to 50 cm in length. The mean size of rock sole over all areas was 22.7 cm (Fig. 26). Two moderate length modes were observed in the standard U.S. shelf at approximately 14 cm and 29 cm. The largest percentages of juveniles were observed at depths less than 50 min the standard U.S. shelf (subarea 1 and 2) (Fig. 27).

Hippoglossoides spp.

Distribution and abundance--Two species of Hippoglossoides were broadly distributed throughout the survey area occurring at 79% of the stations sampled (Fig. 28). Flathead sole (H. elassodon) was predominant in the catches from the southern waters of the standard U.S. shelf through the central shelf waters, whereas Bering flounder (H. robustus) predominate in catches from the north shelf and western area. Largest concentrations of thisgenus were located in the southern portion of the standard U.S. area at depths greater than 50 m. Catch rates of Hippoglossoides averaged 4.9 kg/ha trawled over the entire survey area (Table 13). CPUE was greatest in the standard U.S. area averaging 7.2 kg/ha and was lowest in the north shelf area at 0-6 kg/ha. Subareas 3 and 5 contained the highest concentrations with mean catch rates of 15.2 kg/ha and 13.0 kg/ha, respectively.

The total biomass of Hippoglossoides spp. was estimated at 371,400 t (Table 13). Nearly 90% of the estimated biomass (333,000 t) was located in the, standard U.S. shelf. The western

Figure 26. --Estimated size composition of rock sole by region during the 1990 cooperative U.S.-Russian bottom trawl survey of the Bering Sea shelf.

Figure 27.--Estimated relative size composition of rock sole (sexes combined) by subarea during the 1990 cooperative U.S.-Russian bottom trawl survey of the Bering Sea shelf.

Figure 28. --Distribution and relative abundance in kg/ha of <u>Hippoglossoides</u> spp. sampled during the 1990 cooperative U.S. -Russian bottom trawl survey of the Bering Sea shelf.

		Estimated	Proportion Estimated		Proportion	Mean size	
Depth (m) interval	CPUE (kg/ha)	biomass (t)	of estimat biomass	ed population numbers	of estimated population	Weight (kg)	Length (cm)
U.S. shelf			· · · ·			· · ·	······································
· · ·		a .	-		· · · · · · · · · · · · · · · · · · ·		
, < 50	1.54	11,998	0.032	41,706,006	0.024	0.288	19.8
· < 50	0.28	1,136	0.003	1,589,928	0.001	0.714	— ·
50 - 100	15.21	157,412	0.424	427,386,603	0.247	0.368	33.2
50 - 100	2.52	27,070	0.073	105,211,385	0.061	0.257	28.0
100 - 200	12.99	50,380	0.136	315,395,416	0.182	0.160	24.7
100 - 200	9.00	85,126	0.229	356,875,926	0.206	0.239	26.1
combined	7.19	333,121	0.897	1,248,165,263	0.720	0.267	28.1
<u>lf</u>	•		د .		•		• • •
< 50 ·	0.07	515	0.001	7,798,964	0.004	0.066	
50 - 100	0.73	4,114	0.011	59,044,292	0.034	0.070	
100 - 200	2.83	3,269	0.009	20,211,382	0.012	0.162	24.4
combined	0.56	7,898	0.021	87,054,638	0.050	0.091	24.4
<u>helf</u>			• • •				
< 100	0 7 7	22.005	0.000		0 004		
< 100	2.73	.23,925	0.064	347,702,926	0.201	0.069	19.7
100 - 200	2.3/	6,069	0.016	48,050,335	0.028	0.126	22.5
< 200	0.10	386	0.001	2,735,704	0.002	0.141	–
combined	1.98	30,381	0.082	398,488,966	0.230	0.076	20.0
	•••						
	4.90	371,399	1.000	1,733,708,867	1.000	0.214	26.1
	Depth (m) interval U.S. shelf < 50 < 50 50 - 100 100 - 200 combined lf < 50 50 - 100 100 - 200 combined helf < 100 100 - 200 combined helf	Depth (m) interval Mean CPUE (kg/ha) U.S. shelf (kg/ha) < 50	Depth (m) interval Mean CPUE (kg/ha) Estimated biomass (t) U.S. shelf (t) < 50	Mean interval Estimated (kg/ha) Proportio of estimate biomass U.S. shelf (t) of estimate biomass < 50	Depth (m) interval Mean CPUE (kg/ha) Estimated biomass (t) Proportion of estimated biomass Estimated population numbers U.S. shelf	Depth (m) interval Mean (PUE (kg/ha) Estimated biomass (t) Proportion of estimated biomass Estimated population numbers Proportion of estimated population U.S. shelf 0.032 41,706,006 0.024 < 50	Depth (m) interval Mean CPUE (kg/ha) Estimated biomass (t) Proportion of estimated biomass Estimated population numbers Proportion of estimated population Mean Meight (kg) U.S. shelf 11,998 0.032 41,706,006 0.024 0.288 < 50

Table 13. -- Abundance estimates and mean size of Hippoglossoides spp. by subarea from the 1990 cooperative U.S.-Russian bottom trawl survey of the Bering Sea shelf.

^a -indicates no sample or insufficient data.

^bDifferences in totals and sums of biomass and population numbers by subarea are due to rounding.

ი ე area accounted for 8% of the total biomass with only 2% (7,900 t) found in the north shelf area. The majorportion of the estimated biomass was located in subarea 3, which comprised a little over 42% of the entire survey area biomass estimate.

A total of 1.7 billion fish were estimated for the overall survey area. The population distribution differed from the biomass distribution. Approximately 72% of the population was located in the standard U.S. area compared to 90% of the biomass. The western region contained 23% of the total population number, yet only 8% of the estimated biomass.

<u>Size composition</u>--Lengths for <u>Hippoqlossoides</u> spp. averaged 26.1 cm across the entire survey area (Fig. 29). Fish were largest in the standard U.S. shelf averaging 28.1 cm and smallest in the western shelf at 20.0 cm. Size distributions by subarea are shown in Figure 30. Members of this genus were largest in the 50-100 m depth zones of subareas 3 and 4 with mean lengths of 33.2 cm and 28.0 cm, respectively.

Alaska plaice

Distribution and abundance -- Alaska plaice were frequently encountered throughout the survey, with the exception of subarea 5 (Fig. 31). The total area CPUE of Alaska plaice averaged 11.0 kg/ha (Table 14). Catch rates were highest in the standard U.S. shelf (14.7 kg/ha) followed by the north shelf area (7.2 kg/ha) and the western area (3.4 kg/ha). Alaska plaice were most abundant at depths less than 100 m.

<u>Hippoglossoides</u> spp. by region during the 1990 cooperative U.S.-Russian bottom trawl survey of the Bering Sea shelf.

Figure 30. --Estimated relative size composition of Hippoglossoides sp. (sexes combined) by subarea during the 1990 cooperative U.S.-Russian bottom trawl survey of the Bering Sea shelf;

during the 1990 cooperative U.S. -Russian bottom trawl survey of the Bering Sea shelf.

		Mean	Estimated	Proportion	Estimated	Proportion	Mean	size
Subarea	Depth (m) interval	CPUE (kg/ha)	biomass (t)	of estimate biomass	d population numbers	of estimated population	Weight (kg)	Length (cm)
Standard	U.S. shelf				 ·			
· 1	< 50	15.40	119,938	0.144	259,751,376	0.199	0.462	32.4
<u>`</u> 2	< 50	43.87	179,990	0.216	330,547,521	0.253	0.545	34.3
3	50 - 100	11.92	123,402	0.148	167,981,449	0.129	0.735	38.9
4	50 - 100	22.20	238,904	0.287	282,185,161	0.216	0.847	38.9
5	100 - 200	0.00	. 0	0.000	0	0.000	-	. –
6	100 - 200	1.82	17,209	0.021	9,143,602	0.007	1.882	. –
Subareas	combined	14.66	679,443	0.817	1,049,609,109	0.805	0.647	35.8
North sh	elf			· • · ·		. , . `.		
7	< 50	13.62	.99.209	0.119	180,448,861	0.138	0.550	31.9
8 .	50 - 100	0.26	1.456	0.002	2,995,922	0.002	0.486	·
9	100 - 200	0.02	27	<0.001	90,814	<0.001	0.295	<i>:</i> –
Subareas	combined	7.17	100,692	0.121	183,535,597.	0.141	0.549	31.9
Western	<u>shelf</u>							
14	< 100	1.73	15,150	0.018	20,136,618	0.015	0.752	40.0
15	100 - 200	3.86	9,908	0.012	5,761,983	0.004	1.720	· -
16	< 200	6.66	26,875	0.032	45,582,534	0.035	0.590	31.6
Subareas	combined	3.38	51,934	0.062	71,481,135	0.055	0.727	34.2
All area	9							
combined		10.99	832,069	1.000	1,304,625,842	1.000	0.638	35.2

Table 14.--Abundance estimates and mean size of Alaska plaice by subarea from the 1990 cooperative U.S.-Russian bottom trawl survey of the Bering Sea shelf.

^aO indicates fishing but no catch; - indicates no sample or insufficient data. ^bDifferences in totals and sums of biomass and population numbers by subarea are due to rounding.

The estimated biomass for the entire survey area was 832,000 t (Table 14). The major portion of the estimated biomass was located in the standard U.S. area (82%). An additional 12% was found in the north shelf area, primarily in subarea 7, with the remaining 6% in the western shelf region. The population for the total survey area was estimated at 1.3 billion fish. The abundance distribution of the population was similar to the biomass distribution with 81% of the estimated population located in the standard U.S. shelf.

<u>Size composition</u>--Alaska plaice ranged in size from 9 cm to 61 cm with an overall mean size of 35.2 cm (Fig. 32). Two modes in the size composition were evident in the standard U.S. shelf with a prominent peak at about 35 cm and one peak less pronounced at about 43 cm. This variation was primarily due to the differences in mean length between males and females. Mean length was greatest (35.8 cm) in the standard U.S. shelf and lowest (31.9 cm) in the north shelf region. Juvenile Alaska plaice (< 20 cm) were most abundant at depths less than 50 m in subarea 1 but were also encountered in subarea 16 (Fig. 33). Few juveniles were found in waters greater than 50 m.

Atheresthes spp.

<u>Distribution and abundance</u>--The two species of <u>Atheresthes</u>, arrowtooth flounder (<u>A</u>. <u>stomias</u>) and Kamchatka flounder (<u>A</u>. <u>evermanni</u>) were primarily distributed in the standard U.S. shelf at depths greater than 100 m (Fig. 34). The overall CPUE

Figure 32.--Estimated size composition of Alaska- plaice by region during the 1990 cooperative U.S.-Russian bottom trawl survey of the Bering Sea shelf.

Figure 33.--Estimated relative size composition of Alaska plaice (sexes combined) by subarea during the 1990 cooperative U.S.-Russian bottom trawl survey of the Bering Sea shelf.

Figure 34. --Distribution and relative abundance in kg/ha of <u>Atheresthes</u> spp. sampled during the 1990 cooperative U.S. -Russian bottom trawl survey of the Bering Sea shelf.

was 3.4 kg/ha with mean catch rates highest in subareas 5 (31.9 kg/ha) and 6 (10.0 kg/ha) (Table 15). Atheresthes spp. were not encountered in the north shelf area and only trace amounts were found on the western shelf.

The biomass of <u>Atheresthes</u> SPP. over the entire survey area was estimated at 258,000 t (Table 15). Over 99% of the estimated biomass was located in the standard U.S. shelf, primarily in the 100-200 depth zone of subareas 5 and 6. The remainder of the biomass (1%) was located in subareas 15 and 16 of the western shelf region. The total survey area population was estimated at 625.1 million fish (Table 15).

Size composition--Size compositiondata for Atheresthes spp. was limited to the standard U.S. shelf. The mean size of Atheresthes spp. measured in the standard U.S. shelf was 32.6 cm (Fig. 35). Mean size varied little between subareas and depth zones ranging from 31.8 cm in subarea 3 to 33.0 cm in subarea 6 (Fig. 36).

Figure 35.--Estimated-size composition of A<u>theresthes.</u> spp. for. the standard U.S. shelf during the 1990 cooperative U.S.-Russian bottom trawl survey of the Bering Sea shelf.

		Mean	Estimated	Proportion	Estimated	Proportion	Mean	size
Subarea	Depth (m) interval	CPUE (kg/ha)	biomass (t)	of estimated biomass	population numbers	of estimated population	Weight (kg)	Length (cm)
Standard	U.S. shelf				····	· · · ·		· · ·
1	< 50	0.02	142	0.001	2.881.564	0.005	0.049	-
2	< 50	0.00	0	0.000	0	0.000	0.000	-
3	50 - 100	3.37	34,843	0.135	108,937,669	0.170	0.320	31.8
4	50 - 100	0.22	2,406	0.009	9,419,137	0.015	0.255	32 4
5	100 - 200	31.85	123,565	0.479	295.268.820	0.472	0.418	32.5
· 6	100 - 200	10.04	94,899	0.368	206,138,305	0.330	0.460	33.0
Subareas	combined	5.52	255,855	0.991	622,057,223	. 0.995	0.411	32.6
North sh	<u>elf</u>			·			4 - C	
7	< 50	0.00	0	0.000	0	0.000	0.000	
8	50 - 100	0.00	· 0	0.000	0	0.000	0.000	-
9	100 - 200	0.00	· 0	0.000	· Õ	0.000	0.000	. –
Subareas	combined	0.00	0	0.000	0	0.000	0.000	- `
<u>Western</u>	<u>shelf</u>		-				-	·
14	< 100	0.00	0	0.000	· 0	0.000	0.000	. .
15	100 - 200	0.77	1.981	0.008	1.576.600	0.003	1 256	_
16	< 200	0.10	386	0.001	835,128	0.001	0.463	-
Subareas	combined	0.15	2,367	0.009	2,411,728	0.004	0.982	-
All areas	9	3 41	·· 258 222	1 000	625 075 222	1 000	0 412	
Comprised	•	7.4*	230,222	1.000	02310131223	1.000	0.413	32.0

Table 15. --Abundance estimates and mean size of <u>Atheresthes</u> spp. by subarea from the 1990 cooperative U.S.-Russian bottom trawl survey in Bering Sea shelf.^{a,b}

^aO indicates fishing but no catch; - indicates no sample or insufficient data. ^bDifferences in totals and sums of biomass and population numbers by subarea are due to rounding.

Figure 36. --Estimated relative size composition of <u>Atheresthes</u> sp. (sexes combined) by subarea during the 1990 cooperative U.S.-Russian bottom trawl survey of the Bering Sea shelf.

Pacific halibut

Distribution and abundance--Pacific halibut were encountered in all subareas with the exception of subarea 8 (Fig. 37). The mean CPUE for the entire survey area was 1.4 kg/ha trawled (Table 16). Mean catch rates ranged from 2.15 kg/ha in the standard U.S. shelf to 0.6 kg/ha in the western area and less than 0.1 in the north shelf area. Pacific halibut were most abundant in subarea 3 with catches averaging 3.4 kg/ha.

The biomass for Pacific halibut in the total survey area was estimated to be 109,000 t (Table 16). Almost 92% of the total biomass (99,800 t) was located in the standard U.S. shelf with most of the remaining biomass (8%) found in the western area. Less than 1% of the estimated biomass was located in the north shelf area. Population abundance totaled 89.3 million fish with 86.5 million (97%) located in the standard U.S. shelf.

<u>Size composition</u>--Pacific halibut averaged 39.4 cm in length over all areas (Fig. 38). They were largest in the western shelf area averaging 65.6 cm and smallest in the standard U.S. shelf (39.0 cm). A pronounced size mode was apparent at about 30 cm in the standard U.S. shelf. Mean length increased with increasing depth from 28.8 cm in subarea 2 (< 50 m depth zone) to 74.5 cm in subarea 6 (100-200 m depth zone) as shown in Figure 39.

Figure 37. --Distribution and relative abundance in kg/ha of Pacific halibut sampled during the 1990 cooperative U.S. -Russian bottom trawl survey of the Bering Sea shelf.

ເດັ

	_	Mean	Estimated	Proportion	Estimated	Proportion	Mean	size
Subarea	Depth (m) interval	CPUE (kg/ha)	biomaes (t)	of estimated biomass	population numbers	of estimated population	Weight (kg)	Length (cm)
Standard	U.S. shelf						· ·	
1	< 50	2.07	16,149	0.148	36,974,614	0.414	0.437	31 8
2	< 50	1.48	6,090	0.056	17,442,420	0.195	0.349	28.8
3	50 - 100	3.36	34,828	0.320	19,495,396	0.218	1.786	49 1
4	50 - 100	0.89	9,548	0.088	5.818.456	0.065	1.641	43.2
5	100 - 200	2.24	8,681	0.080	3,061,369	0.034	2.836	66 8
6	100 - 200	2.59	24,457	0.225	3,732,210	0.042	6.553	74.5
Subareas	combined	2.15	99,754	0.916	86,524,466	0.969	1.153	39.0
<u>North sh</u>	elf							
7	< 50	0.03	249	0.002	832.603	0.009	0.298	• _
8	50 - 100	0.00	0	0.000	0	0.000	-	_
9	100 - 200	0.04	50	<0.001	49,731	0.001	0.998	-
Subareas	combined	0.02	298	0.003	882,334	0.010	0.338	-
Western	<u>shelf</u>							
14	< 100	0.14	1,215	0.011	146,862	0.002	8.275	97.3
15	100 - 200	0.62	1,594	0.015	432,488	0.005	3,685	60 3
16	< 200	1.50	6,038	0.055	1,310,770	0.015	4.606	63.8
Subareas	combined	0.58	8,847	0.081	1,890,119	0.021	4.680	65.6
All area	8							
combined		1.44	108,889	1.000	89,296,920	1.000	1.220	39.4

Table 16.--Abundance estimates and mean size of Pacific halibut by subarea from the 1990 cooperative U.S.-Russian bottom trawl survey of the Bering Sea shelf.^{a,b}

^aO indicates fishing but no catch; - indicates no sample or insufficient data.

^bDifferences in totals and sums of biomass and population numbers by subarea are due to rounding.

survey of the Bering Sea shelf.

Figure 39.--Estimated relative size composition of Pacific halibut (sexes combined) by subarea during the 1990 cooperative U.S.-Russian bottom trawl survey of the Bering Sea shelf.

Ň

Greenland turbot

Distribution and abundance --Greenland turbot (Reinhardtius hippoglossoides) were encountered at relatively low levels of abundance and occurred at only 20% of the stations (Fig. 40). The overall mean catch rate was less than 0.1 kg/ha (Table 17). They were most abundant at depths of 100-200 m in subareas 6, 9, and 15 with mean CPUE values of 0.29 kg/ha, 0.35 kg/ha, and 1.19 -kg/ha, respectively. Greenland turbot biomass over all areas was estimated at 7,200 t. Nearly 81% of the biomass was

therefore-size composition information is not available. However, based on mean weight data, the largest fish were found in the western shelf area, averaging 0.3-2 kg (Table 17). Greenland turbot were-smallest in the north shelf area with a mean weight of 0.15 kg.

Abundance and Distribution of Major Crab Species The Russian bottom trawl appeared to have sampled invertebrates poorly based on the results of the comparative trawl experiment. However, since the survey data may provide some insight on the relative distribution and relative abundance of snow crab and king crab, it is summarized here. Snow crab. (C. opilio and C. bairdi combined) was the dominant commercial crab group comprising 7.7% of the total-biomassof fish and

Figure 40.--Distribution and relative abundance in kg/ha of Greenland turbot sampled during the 1990 cooperative U.S.-Russian bottom trawl survey of the Bering Sea shelf.

		Mean	Estimated	Proportion	Estimated	Proportion	Mean	вize
Subarea	Depth (m) interval	CPUE (kg/ha)	biomass (t)	of estimated biomass	population numbers	of estimated population	Weight (kg)	Lengti (cm)
		· · · ·	· · · · · · · · · · · · · · · · · · ·				· · · · · · · · · · · · · · · · · · ·	
Standard	U.S. shelf				· · ·		,	
1	< 50	0.00	0	0.000	0	0.000	0.000	· -
2	< 50	0.00	Õ	0.000	Ō	0.000	0.000	· · · ·
3 .	50 - 100	0.00	Ō	0.000	Ō	0.000	0.000	· _ ,
4	50 - 100	0.04	423	0.059	1,962,432	0.078	0.220	. –
5	100 - 200	0.00	0	0.000	0.	0.000	0.000	· _
6	100 - 200	0.29	2,724	0.380	8,849,208	0.350	0.308	
Subareas	combined	0.07	3,156	0.440	10,811,631	0.427	0.292	- - -
North she	lf							•
7	< 50	0.00		0.000	. 0	0.000	0.000	_
8	50 - 100	0.03	156	0.022	1,986,452	0.079	0.079	
9	100 - 200	0.35	406	0.057	1,732,053	0.068	0.234	-
Subareas	combined	0.04	562	.0.078	3,718,505	0.147	0.151	_
Western s	<u>helf</u>	• •			•			•
· 14	× 100	0.03	207	0 0/1	3 810 837	0 151	0 079	
15	100 - 200	1 10	3 061	0.041	5,010,037	0.151	0.070	· · -
16	< 200	0.02	99	0.014	183,270	0.007	0.540	–
Subareas	combined	0.23	3,457	0.482	10,763,531	0.426	0.321	-
Allarea	· ·					,	· .	
combined	•	0.09	7,175	1.000	25.293.667	1.000	0.284	

Table 17.-- Abundance estimates and mean size of Greenland turbot by subarea from the 1990 cooperative U.S.-Russian bottom trawl survey of the Bering Sea shelf.^{a,b}

^aO indicates fishing but no catch; - indicates no sample or insufficient data. ^bDifferences in totals and sums of biomass and population numbers by subarea are due to rounding. ິ ເ invertebrates combined (Table 7). They were encountered in all subareas at an average catch rate of 16.7 kg/ha. Red and blue king crab were encountered less frequently and had a combined overall catch rate of 0.8 kg/ha trawled.

Tanner crab (Chionoecetes opilio)

Distribution and abundance -- Opilio Tanner crab were broadly distributed throughout the survey region (Fig. 41). Largest catches (> 83 kg/ha trawled) generally occurred at bottom water temperatures of 1° C and colder in the northern and central portion of the Bering Sea. The overall mean CPUE for <u>opilio</u> Tanner crab was 14.7 kg/ha (Table 18). The north shelf area had the greatest mean catch rate at 17.5 kg/ha. Catch rates were lowest in the western shelf area at 11.4 kg/ha.

The total biomass and population number of <u>opilio</u> Tanner crab was estimated at 1.1 million t and 21.5 billion crabs, respectively. The distribution of population numbers was markedly different than the biomass distribution. Approximately 62% of the total estimated biomass and 35% of the population numbers were located in the standard U.S. shelf while 22% of the biomass and over one-half (52%) of the population were found in the north shelf region. This was due to the large number of small crab in north shelf subareas 7 and 8. The western shelf area accounted for 15% of the total biomass and nearly 13% of the population number.

the Bering Sea shelf.

.

Table 18.--Abundance estimates and mean size of Tanner crab (C. <u>opilio</u>) by subarea from the 1990 cooperative U.-S.-Russian bottom trawl of the Bering Sea shelf.^a

Subarea	Depth (m) interval	Mean CPUE (kg/ha)	Estimated biomass (t)	Proportion of estimate biomass	n Estimated ed population numbers	Proportion of estimated population	Mean Weight (kg)
Standard	<u>U.S. shelf</u>						<u> </u>
1	< 50	0.30	2,357	0.002	16,735,712	0.001	0.141
2	< 50	2.43	9,977	0.009	140,360,891	0.007	0.071
. 3	50 - 100	3.48	35,998	0.032	193,582,835	0.009	0.186
. 4	50 - 100	36.61	393,932	0.353	4,143,451,994	0.192	0.095
5	100 - 200	2.63	10,187	0.009	51,262,514	0.002	0.199
- 6	100 - 200	25.63	242,349	0.217	3,021,316,897	0.140	0.080
Subareas	combined	14.99	694,800	0.623	7,566,710,843	0.351	0.092
North sh	<u>elf</u>						•
7	< 50	16.19	117,900	0.106	7,891,568,815	0.366	0.015
8	50 - 100	18.73	104,942	0.094	3,207,346,796	0.149	0.033
9	100 - 200	19.64	22,719	0.020	169,904,659	0.008	0.134
Subareas	combined	17.49	245,561	0.220	11,268,820,270	0.523	0.022
<u>Western</u>	<u>shelf</u>	×					
14	< 100	12.25	107,282	0.096	1,755,385,518	0.081	0.061
15	100 - 200	25.70	65,916	0.059	941,915,556	0.044	0.070
16	< 200	0.58	2,352	0.002	41,561,844	0.002	0.057
Subareas	combined	11.43	175,550	0.157	2,738,862,918	0.127	0.064
All areas combined	3	14.73	1,115,911	1.000	21,574,394,031	1.000	0.052

^aDifferences in totals and sums of biomass and population numbers by subarea are due to rounding.

88

. * *

Tanner crab (C. bairdi)

Distribution and abundance--Bairdi Tanner crab were primarily found in areas where-water temperatures was 2° C or warmer in the southern portion of the standard shelf and in western shelf subarea 16 (Fig. 42). This species was not encountered in the north shelf area or subarea 14 of the western shelf. The overall CPUE was 1.5 kg/ha with highest mean catch rates located in subarea 3 at 5.3 kg/ha (Table 19). Bairdi Tanner crab were least abundant in subareas 2 and 15 averaging 0.4 kg/ha.

The biomass of bairdi Tanner crab was estimated at 115,911 t with population numbers totaling 596 million crabs. Eighty-six percent of the biomass was located in the standard U.S. shelf with the remaining 14% in the western shelf region. Mean individual crab weights were highest in the western shelf region with an average weight of 0.36 kg compared to 0.18 kg in the standard U.S. shelf.

Red king crab

Distribution and abundance--Red king crab (Paralithodes camtschatica) occurred at 33 stations. Their distribution was limited to the southeastern portion of the survey area although they were observed in one haul in the western shelf area (Fig. 43). This species was not encountered at depths greater than 100 m. The overall average catch rate was 0.6 kg/ha (Table 20).

Figure 42. --Distribution and relative abundance in kg/ha of Tanner crab (C. <u>bairdi</u>) sampled during the 1990 cooperative U.S. -Russian bottom trawl survey of the Bering Sea shelf.

Table 19Abundance	estimates and	l mean size	of Tanner cra	b (C.	<u>bairdi</u>) by
subarea fi	rom the 1990 (cooperative	U.SRussian	bottom	trawl survey
of the Beri	ng Sea shelf.ª	1,D			

	•		,			· · · · · · · · · · · · · · · · · · ·	-		
	N.,	Depth (m)	Mean CPUE	Estimated biomass	Proportion of estimated	Estimated population	Proportion of estimated	Mean Weight	••••••••••••••••••••••••••••••••••••••
	Subarea	interval	(kg/ha)	(t)	biomass	numbers	population	(kg)	
	· · · ·	· .				3	-		
· .	Standard	U.S. shelf			· · ·				. · · · ·
	- 1	< 50	1.82	14.193	0.122	45,455,170	0.076	0.312	• • •
	2	< 50	0.37	1.519	0.013	7.302.795	0.012	0.208	-
	3	50 - 100	5.28	54,609	0.469	243,583,138	0.408	0.224	
	4	50 - 100	1.44	15,496	0.133	88,172,564	0.148	0.176	
	5	100 - 200	2.14	8,302	0.071	81,015,843	0.136	0.102	2 N
	6	100 - 200	0.68	6,461	0.055	86,629,467	0.145	0.075	: .
• • •,	Subareas	combined	2.17	100,581	0.864	522,158,976	0.876	0.182	
, ' , '	<u>North sh</u>	elf			· ·	•	· · · · · · · · · · · · · · · · · · ·	· · ·	ע ד
	. 7	< 50	0.00	0	0.000	0	0.000	· ·	
· .	8	50 - 100	0.00	Ō	0.000	0	0.000	· · · · .	
· .	9	100 - 200	0.00	0	0.000	0	0.000	-	
	Subareas	combined	0.00	O	0.000	0	0.000	. –	-
	Western	<u>shelf</u>	•		۰ ـ ۲			· · ·	
	14	< 100	0 00	0	0.000	0.	0.000	·	-
· .	15	100 - 200	0 41	1.054	0.009	4.433.714	0.007	0.238	
	16	< 200	3.68	14,840	0.127	39,767,866	0.067	0.373	
	Subareas	combined	1.03	15,894	0.136	44,201,581	0.074	0.360	
	All area	8							· ,
	combined	· ·	1.54	116,475	1.000	596,360,557	1.000	0.195	

^aO indicates fishing but no catch; - indicates no sample or insufficient data. ^bDifferences in totals and sums of biomass and population numbers by subarea are due to rounding.

Subarea	Depth (m) interval	Mean CPUE (kg/ha)	Estimated biomass (t)	Proportion of estimated biomass	Estimated population numbers	Proportion of estimated population	Mean Weight (kg)	
Standard	U.S. shelf							
1	< 50	1.15	8,919	0.197	6,454,143	0.176	1.382	
2	< 50	0.01	53	0.001	111,928	0.003	0.476	-
3	50 - 100	3.47	35,953	0.793	29,043,622	0.794	1.238	
· 4	50 - 100	0.03	328	0.007	922,266	0.025	0.355	
5	100 - 200	0.00		0.000	0	0.000	_	- 13
6	100 - 200	0.00	0	0.000	0	0.000	-	
Subareas	combined	0.98	45,253	0.999	36,531,958	0.999	1.239	
North she	elf			· , · · · ·	•	· · · ·		Q
	× EO -	0 00		0.000		0.000	- <u>-</u>	ω
1	FO - 100	0.00	. 0	0.000	0			
9	100 - 200	0.00	0	0.000	· · · · · · · · · · · · · · · · · · ·	0.000	: _	
Subareas	combined	0.00	0	0.000	0	0.000	•	
Western	<u>shelf</u>	• • •			, . , , ,		· · ·	
14	< 100	0.00	. 0	0.000		0.000	_	-
15	100 - 200	0.00	ů n	0.000	· · · ·	0,000	· _	-
16	< 200	0.02	61	0.001	38,709	0.001	1.588	
Subareas	combined	<0.01	61	0.001	38,709	0.001	1.588	
All area combined	8	0.60	45,314	1.000	36,570,667	1.000	1.239	

Table 20. -- Abundance estimates and mean size of red king crab by subarea from the 1990 cooperative U.S.-Russian bottom trawl survey of the Bering Sea Shelf.

^aO indicates fishing but no catch; - indicates no sample or insufficient data. ^bDifferences in totals and sums of biomass and population numbers by subarea are due to rounding. Red king crab were most abundant in standard U.S. shelf subarea 3 with a mean CPUE of 3.5 kg/ha.

Nearly 100% of the estimated biomass of 45,253 t was located in the standard U.S. shelf with 79% of the total biomass in subarea 3. Estimated population abundance totaled 36.6 million crab over the entire survey area.

Blue king crab

Distribution and abundance--Blue king crab, were infrequently encountered during the survey (Fig. 44). The overall CPUE value averaged 0.22 kg/ha with the highest mean catch rate occurring in the western shelf area at 0.98 kg/ha (Table 21). Catches were lowest in the north shelf region at 0.01 kg/ha. Blue king crab were most abundant in subarea 16 at 2.7 kg/ha. The total area biomass of blue king crab was/estimated at 16,943 t with 92% located in subarea 16. The standard U.S. shelf accounted for 6% of the total biomass while the north shelf area contributed the remaining 2%. Population numbers of blue king crab were estimated at 25.2 million crab for the total survey area.

Figure 44. --Distribution and relative abundance in kg/ha of blue king crab sampled during the 1990 cooperative U.S. -Russian bottom trawl survey of the Bering Sea shelf.

Table	21.	Abuno	lance	esti	mates	and	mean	size	of	blue	king	crab	by	suba	irea
		from	the	1990	coope	erati	ve U.S	SRu	ssia	an bo	ttom	trawl	sur	rvey	of
		the	Beri	ng S	ea si	helf.	a,b								

Subarea	Depth (m) interval	Mean CPUE (kg/ha)	Estimated biomass (t)	Proportion of estimated biomass	Estimated population numbers	Proportion of estimated population	Mean Weight (kg)
<u> </u>						·····	
Standard	U.S. shelf						
1	< 50	0.00	0	0.000	0	0.000	-
2	< 50	0.00	0	0,000	0	0.000	-
3	50 - 100	0.00	0	0,000	0	0.000	-
4	50 – 10Ò	0.17	1,811	0.107	1,504,531	0.060	1.204
5	100 - 200	0.00	0	0.000	0	0.000	-
6	100 - 200	0.00	0	0.000	0	0.000	-
Subareas	combined	0.04	1,811	0.107	1,504,531	0.060	1.204
North sh	<u>elf</u>						
7	< 50	0.01	46	0.003	409,593	0.002	0.113
8	50 - 100	0.01	32	0.002	64,443	0.003	0.499
9	100 - 200	0.00	0	0.000	0	0.000	-
Subareas	combined	0.01	79	0.005	474,036	0.019	0.166
Western	<u>shelf</u>						
14	< 100	0.40	3,150	0.186	12,986,318	0.515	0.270
15	100 - 200	0.22	560	Ò.033	536,858	0.021	1.044
16	< 200	2.72	10,984	0.648	9,729,786	0.386	1.129
Subareas	combined	0.98	15,054	0.889	23,252,961	0.922 `	0.647
All area	8						
combined		0.22	16,943	1.000	25,231,528	1.000	0.672

-

^aO indicates fishing but no catch; - indicates no sample or insufficient data. ^bDifferences in totals and sums of biomass and population numbers by subarea are due to rounding. 96

DISCUSSION

The comparison of results from past U.S. and U.S.-Russian cooperative bottom trawl surveys of the standard U.S. shelf have revealed major differences in abundance estimates. For example, biomass estimates derived from U.S. data for most major fish species sampled in both 1988 and 1989 were significantly greater than estimates derived from data collected aboard Russian research vessels (Table 22). Biomass estimates from the

Table 22. --Biomass estimates (t) for major fish species from the standard U.S. shelf commonly fished during separate U.S. and, cooperative U.S.-Russian bottom trawl surveys conducted during 1988, 1989, and 1990.

		1988	· · · ·	989		1990
Species	U.S.	Cooperative U.S Russian	U.S.	Cooperative U.S Russian	U.S.	Cooperative U.S <u>Russian</u>
Walleye pollock	6,922,000	2,052,455	5,921,600	2,922,284	7,656,972	3,153,303
Pacific cod	959,500	531,407	962,500	794,960	744,337	656,577
Yellowfin sole	2,854,600	1,230,268	2,831,800	1,431,121	2,182,822	2,492,097
Rock sole	1,903,500	742,108	1,318,200	988,743	1,410,582	1,304,064
<u>Hippoglossoides</u> spp.	557,500	194,020	523,200	266,947	652,488	333,121
Alaska plaice	936,800	434,279	599,400	369,183	529,387	679,443
Greenland turbot	11,600	3,963	8,900	5,431	14,371	3,156
Atheresthes spp.	306,400	105,841	410,700	170,760	467,522	255,855
Pacific halibut	138,200	50,413	77,100	85,518	89,936	99,754

1988 and 1989 U.S.-Russian cooperative survey data were over 60% lower for many flatfish species when compared to independent U.S. survey estimates. These results most likely reflect a greater fishing efficiency by the U.S. standard 83-112 bottom trawl for many bottom species relative to the efficiency of the several different Russian trawls used in the cooperative surveys. The Russian sampling net used in 1988 had a 69 m headrope and 85 m footrope with a reported horizontal opening of 29 m and a vertical opening of 5 m. The net used during the 1989 cooperative survey had a 35 m headrope and a reported 22 m horizontal and 12 m vertical opening. There is little information available to fully evaluate these net's bottomtending characteristics or fishing efficiencies.

Discrepancies in within-year biomass estimates between U.S. and U.S. -Russian cooperative surveys may have also resulted from bias created by navigational equipment. Starting and ending positions aboard the Russian vessels in 1988 and 1989 were generated through a Russian satellite navigation system. This system updated the ship's position at irregular intervals that did not necessarily correspond to the actual beginning and ending times of the haul and resulted in imprecise distance-fished information. Comparisons between survey results are further complicated because the U.S.-Russian cooperative trawl surveys in 1988-1990 started about 2 weeks earlier than the independent U.S. This difference in sampling time may have allowed some survev. portion of the groundfish assemblage to move into or out of the survey area. Such movement may have accounted for some of the differences observed in biomass estimates and population parameters between the two surveys although it is extremely

unlikely to have created the magnitude of differences observed for many species during 1988 and 1989.

The comparison of estimates between the two 1990 surveys showed greater within-year consistency relative to comparisons of the surveys conducted in 1988 and 1989 (Table, 22). Reasons- for such an improvement include: 1) the Russian bottom trawl used during 1990 appears to have tended bottom much better than those used during earlier surveys and 2) the use of the Loran-C navigational system improved the precision of the haul distance actually transected. Percent differences in biomass estimates from the two 1990 surveys were much smaller- for some fish species, including Pacific cod(± 12%), yellowfin sole (± 12%), rock sole (± 8%), and Alaska plaice (+ 22%) than differences seen in earlier years.

Overall mean lengths of flatfish sampled in the standard U.S. shelf during both surveys conducted in 1990 were nearly identical for yellowfin sole, Alaska plaice, and Pacific halibut (Fig. 45). The mean length of rock sole was somewhat smaller (19.5 cm) from the independent U.S. survey compared to the cooperative Russian survey (22.9 cm). The greatest differences in size composition for any species were observed with walleye pollock with a mean length of 41.9 cm using the U.S. survey data and 27.0 cm using the cooperative survey data (Fig. 46). The Russian trawl was apparently much more efficient in capturing juvenile walleye pollock while the U.S. 83-112 trawl appeared more effective in sampling the-adult portion of the population.

Figure 45. --Length composition of yellowfin sole, rock sole, Alaska plaice, and Pacific halibut during the 1990 independent US. bottom trawl survey and-the 1990 cooperative U.S.-Russian bottom trawl survey. Data is from the standard U.S. area commonly fished during both surveys.

cooperative U.S.-Russian bottom trawl survey. Data is from the standard U.S. area commonly fished during both surveys.

The size distribution of Pacific cod was similar between data sets although the independent U.S. survey data indicated a somewhat smaller mean length of 39.9 cm compared to the cooperative survey estimate of 43.4 cm.

Information obtained during the 1990 cooperative U.S.-Russian survey has provided U.S. scientists the most complete set of contiguous data to assess the relative distribution, abundance, and biological characteristics of some groundfish and invertebrate species in both the eastern and western portions of the Bering Sea continental shelf. However, biomass and population estimates derived from the 1990 cooperative U.S.-Russian bottom trawl survey. should be considered in relative terms, not absolute terms. Potential bias due to survey timing, sampling density, differences in sampling trawls used between survey years, as well as bottom trawl efficiency can not be fully evaluated in the Russian data sets.

Acknowledgments

The authors wish to express their gratitude to Russian scientist Dr. V. M. Paschenko, the specialists, and crew of the <u>Novokotovsk</u> that participated in this survey. Our appreciation is also extended to U.S. scientists Dennis Benjamin, Doyne Kessler, David Roetcisoender, Pierre Dawson, Ray Baxter, and John Bowerman who assisted in the onboard collection of the data presented in this report.

CITATIONS

- Alverson, D.L., and W.T. Pereyra. 1969. Demersal fish explorations in the northeast Pacific Ocean--An evaluation of exploratory fishing methods and analytical approaches to stock size and yield forecasts. J. Fish. Res. Board Can. 26:1985-2001.
 - Armistead, C.E., and D.G. Nichol. 1992. 1990 bottom trawl survey of the eastern Bering Sea continental shelf. U.S. Dep. Commer., NOAA Tech. Memo. NMFS-AFSC-7, 190 p.
 - Geisser S., and W. F. Eddy. 1979. A predictive approach to model selection. J. Am. Stat. Assoc. 74(365):153-160.
 - Hirschberger, W. A. 1985. Results of the 1983 U.S. and U.S.S.R. bottom trawl surveys in the eastern Bering Sea. U.S. Dep. Commer., NOAA Tech. Memo. NMFS F/NWC-85, 41 p.
 - Moiseev, P.A. (editor) 1963-1965, 1970. Soviet fisheries investigations in the northeastern Pacific. Tr. Vses. Nauchnoissled. Inst. Morsk. Rybn. Khoz. Okeanogr. 48, 49, 53, 58, 70 (Izv. Tikhookean. Nauchno-issled. Morsk. Rybn. Khoz. Okeanogr. 50-53, 72). (Transl. in Soviet Fisheries Investigations in the northeast Pacific, Pt. I-V, by Israel Program Sci. Transl., avail. Natl. Tech. Inf. serv., Springfield, VA., as TT 67-51203, TT 67-51204, TT 67-51205, TT 67-51206, and TT 71-50127).
 - Raymore, P.A. 1988. Winter distribution of groundfish in the eastern Bering Sea based on U.S.S.R. cooperative survey data. NWAFC Processed Rep.88-17, 113 p. Alaska Fish. Sci. Ctr., Natl. Mar. Fish. Serv., NOAA, 7600 Sand Point Way NE BIN C15700, Seattle, Wash. 98115-0070.
 - von Bertalanffy, L. 1938 A quantitative theory of organic growth., Hum. Biol. 10:181-213.
 - Wakabayashi, K., R.G. Bakkala, and M.S. Alton. 1985. Methods of the U.S.-Japan demersal trawl surveys. In R.G. Bakkala and K. Wakabayashi (editors), Results of cooperative U.S.-Japan groundfish investigations in the Bering Sea during May-August 1979, p. 7-29. Int. North Pac. Fish. Comm., Bull. 44.
THIS PAGE INTENTIONALLY LEFT BLANK

APPENDIX A

Station, Haul, and Catch Data

Appendix A contains computer listings of stationand catch data for all successfully completed standard stations used in the analysis of the 1990 cooperative U.S. -Russian bottom trawl survey of the Bering Sea shelf. The listing begins with haul number 51. Hauls 1 through 50 were made during an ichthyoplankton survey just prior to the beginning of the bottom trawl survey and are not listed here. Missing haul numbers indicate either unsatisfactory or comparative tows. Station locations by haul number are shown in Figure A-1.

Latitudes and logitudes are in degrees, minutes, and tenths of minutes. Gear depths are in fathoms and catch weights, are in kilograms. Tow duration is in tenths of hours. Distance fished is in nautical miles.

<u>Tabl</u>e

Page

A-l. Haul and catch data for successfully completed tows by the R/V <u>Novokotovsk</u>..... 107

survey of the Bering Sea shelf.

Table A-1. --Continued.

HAUL No.	149	150	151	152	153	154	155	156	157	158	159
MONTH/DAY/YEAR	6/ 4/90	6/ 4/90	6/ 5/90	6/ 5/90	6/ 5/90	6/ 5/90	6/ 5/90	6/ 5/90	6/ 6/90	6/ 6/90	6/ 6/90
LATITUDE START	58 59.3	59 18.9	59 39.9	60 23.8	60. 38.9	60 59.0	61 19.0	61 38.9	62 40.1	62 20.7	62 0.7
LONGITUDE START	167 14.7	167 15.3	167 17.5	167 22.1	167 20.6	167 22.5	167 24.0	167 26.1	168 54.7	168 52.8	168 50.2
LATITUDE END	59 0.8	59 20.4	59 40.8	60 24.6	60 40.4	61 0.5	61 20.5	61 40.6	62 38.7	62 19.2	61 59.2
LONGITUDE END	16/ 14.2	167 14.8	167 19.8	167 19.2	167 20.5	167 22.5	167 23.7	167 25.6	168 54.7	168 52.1	168 50.0
LURAN START	33495.00	33280.60	33049.00	32546.40	32366.60	32129.70	31892.90	31655.10	31016.40	31248.40	31488.00
LUKAN STAKT	40000.30	485/8.30	48501.70	48341.00	48274.70	48204.50	48136.10	48071.90	48147.80	48212.10	48279.60
LORAN END	334//./0	33263.10	33042.70	32532.80	32348.70	32112.10	31874.80	31635.00	31034.10	31265.90	31506.10
CEAD DEDIN	40047.00	48309.40	48508.90	48323.40	48268.30	48198.90	48129.40	48064.60	48153.00	48215.70	48284.80
GEAR DEPTH	19		14	13	12	13	10	10	16	15	16
DISTANCE ELEVED	0.50	0.50	· U.SU	0.50	0.50	0.50	0.50	0.50	0.50	0.50	0.50
DISTANCE FISHED	1.22	. 1.50	1.49	1.03	1.50	1.48	1.49	1.04	1.47	1.54	1.52
POLLOCK -	83.8	196.4	56.4	29.3	26.5	21.4	1.1	29.1	26.5	67.5	139.8
PAC COD	80.0	217.2	0.0	0.7	0.0	0.7	31.1	41.9	0.0	0.0	0.0
PAC OC PERCH	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
OTHER RCKFISH	0.0	0.0	0.0	0.0	. 0.0	0.0	0.0	0.0	. 0.0	0.0	0.0
SABLEFISH	0.0	0.0	0.0	. 0.0	0.0	0.0	0.0	0.0	0.0	0,0	0.0
PAC HERRING	52.2	99.0	13.4	0.9	0.0	(1.7	14.3	20.9	33.1	232.1	450.0
AIKA MALKEKEL	0.0	0.0	0.0	0.0	0.0	0.0	0.0	. 0.0	0.0	0.0	0.0
SLULPINS	34.8	43.2	-81.6	55.8	86.0	. 19.0	39.5	47.8	61.7	223.1	109.6
	170	U.U 43.0	0.0	0.0	0.0	0.0	. 0.0	0.0	0.0	0.0	0.0
TOT DOUNDELOU	47.0	02.0	00.1	59.3	50.9	58.4	45.4	87.5	16.5	120.6	43.4
	211.8	Q1/./	219.0	145.9	103.4	1/1.1	151.4	227.1	137.8	643.3	742.7
YELLOW SOLE	1751.8	1984.4	2258.6	925.9	567.7	1032.9	582.0	378.1	23.1	398.8	132.1
ROCK SOLE	321.9	270.3	559.1	51.8	53.6	12.8	11.5	1.8	0.0	0.0	0.9
FLATHEAD SOLE	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
ALASKA PLAICE	2/1.2	289.7	565.0	95.5	63.9	33.1	68.3	104.7	55.1	944.5	518.1
GREENLAND IBI	0.0	0.0	0.0	. 0.0	0.0	. 0.0	0.0	0.0	0.0	0.0	0.0
	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
PAL HALIBUI	2.9	8.8	151.7	0.0	0.7	0.0	0.0	1.5	0.0	0.0	0.0
TOT ELATEICH	2750 2	2540 5	40.7	4.4	7/1 0	1107 0	28.7	11.0	· U.2	4.0	1.3
IUI FLAIFISH	2339.2	2300.3	3303.0	10/1.0	741.0	1105.0	090.5	497.1	78.5	1347.9	652.4
SKATES	0.0	0.0	0.0	0.0	o.0 ج	0.0	0.0	0.0	0.0	0.0	0.0
TOT ELASMOBRH	0.0	. 0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
RED KING CRAB	4.6	0,0	0.0	. 0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
BLUE KING CRAB	0.0	0.0	0.0	0.0	0.0	`0.0	0.0	0.0	0.0	0.0	0.0
TANNER, BAIRDI	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
TANNER, OPILIO	1.3	0.4	0.0	0.0	0.0	0.0	0.0	0.0	988.8	765.0	329.2
TANNER, HYBRID	0.0	0.0	0.0	0.0	0.0	0.0	0.0	. 0.0	0.0	0.0	0.0
OTHER CRAB	48.3	4.2	3.1	0.0	1.8	7.7	17.9	4.4	3.3) 0 . 0	0.0
SNAILS	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	326.3	0.0
SHRIMP	1.3	0.0	3.3	17.6	7.7	3.3	2.2	6.4	2.2	18.1	8.6
STARFISH	869.1	598.6	578.5	363.8	295.4	305.3	803.6	783.7	178.6	117.7	34.0
SQUID	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	` 0.0	0.0	0.0
OCTOPUS	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
OTHER INVERTS	0.0	14.6	0.0	0.0	0.0	11.0	18.3	57.3	0.0	285.7	0.0
TOTAL INVERTS	924.6	617.7	584.9	381.4	304.9	327.4	841.9	851.9	1172.9	1512.8	371.7
EMPTY SHELLS	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
OTHER	46.1	12.1	21.6	7.7	8.8	0.0	5.5	0.0	103.6	0.0	297.2
TOTAL CATCH	3607.7	3808.1	4409.0	1612.7	1218.1	1601_4	1669.3	1576.1	1492.8	3504.0	2064.0

114

,

1

ŕ

Haul No.	160	161	162	163	164	165	166	167	: _ 168	169	170
MONTH/DAY/YEAR	6/ 6/90	6/ 6/90	6/ 6/90	6/ 6/90	6/ 6/90	6/ 7/90	6/ 7/90	6/ 7/90	6/ 7/90	6/ 7/90	6/ 7/90
LATITUDE START	61 40.9	61 21.1	61 1.1	60 41.1	60 21.5	59 59.0	59 40.9	59 20.9	59 1.2	58 41.3	58 21.2
LONGITUDE START	168 49.3	168 47.3	168 45.2	168 42.3	168 40.5	168 38.8	168 37.0	168 34.2	168 32.1	168 30.4	168 27.9
	61 39.4	61 19.6	60 59.6	60 39.7	60 20.0	60 0.6	59 39.3	59 19.3	58 59.7	58 39.8	58 19.7
	168 49 2	168 47.2	168 45 3	168 42.0	168 39.9	168 39.4	168 36.7	168 34.1	168 32.0	168 30.2	168 27.6
LODAN STADT	31727 50	31044 20	32207 60	32446 20	12682 30	32051 50	33166 00	33401 00	33630 80	33858 20	- 34078 10
LODAN START	48354 50	48/20 30	48507 80	18215 00	18276 10	193/7 00	18406 10	18473 40	18538 00	18600.00	18660 70
LORAN START	317/5 40	2109/ /0	10007.00	72/47 80	72400 50	7207/ 10	77194 /0	77/20 00	774/B /0	3397/ 00	34003 50
LUKAN ENU	J174J.00	31704.40	32223.70	32403.00	10201 (0	107/1 70	19/11 70	JJ420.70	105/3 00	10405 70	1944/ 00
LURAN ENU	48360.30	48435.40	40314.00	10219.90	10201.00	16341.50	10411.70	104/0.00	10242.00	10005.70	10004.90
GEAR DEPTH	20	19	10	17	1/	, 18		20	25	29	
DURATION IN HOURS	0.50	0.50	0.50	0.50	0.30	0.50	0.50	0.50	0.50	0.50	0.50
DISTANCE FISHED	1.50	1.51	1.50	1.49	1.51	1.54	1.67	1.61	1.52	1.52	1.49
POLLOCK	183.9	17.0	133.4	103.8	222.9	425.7	221.1	738.3	992.5	747.6	1890.9
PAC COD	0.4	0.4	0.0	107.8	144.4	82.5	363.1	203.5	466.3	300.3	1408.3
PAC OC PERCH	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	· · 0.0	. 0.0
OTHER RCKFISH	0.0	0.0	0.0	.0.0	0.0	0.0	.0.0	0.0	0.0	. 0.0	0.0
SABLEFISH	. 0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
PAC HERRING	- 147_0	75:4	3.7	77	52.0	146.6	189.6	36.6	466.3	1013.2	122.4
ATKA MARKEDEI	0.0	0.0	0.0	0.0	0.0	0.0	- 0.0	0.0	0_0	0_0	0_0
	118 4	101 0	145 5	61 1	89.5	50.5	108 5	55 6	32.6	23 1	684 8
EEI DOUTE	110.4	0.0	0.0		0,.5	0.0	0.0	0.0	0.0	- 0 0	0.0
EELPOUIS	52.2	21.0	15 7	20.1	0.0 // 8	92.2	77.5	49.0	55 6	25 4	6.6
UTHER RNUFISH	502.0	21.0	10.7	20.1	44.0	707 E		1107.0	2017 7	2100 8	/112 7
TOT ROUNDFISH	502.0	-215.0	298.3	300.5	504.0	/8/.5	A12.0	1105.0	~ 2013.3	2109.0	4112.7
YELLOW SOLE	160.5	598.1	1400.8	98 8.8	213.8	4276.8	11853.6	5201.8	3106.1	502.9	3952.9
ROCK SOLE	3.3	17.9	21.4	43.0	· 31.5	77.8	315.9	922.9	1202.0	852.1	2712.4
FLATHEAD SOLE	0.0	2.0	0.0	0.0	4.4	0.0	0.0	20.9	21.2	. 12.1	81.6
ALASKA PLAICE	862.9	524.5	331.1	249.8	463.0	1126.6	6152.5	1342.4	1033.8	363.3	3349.7
GREENLAND TBT	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
ARROWTOOTH FL	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	: 0.0	0.0
PAC HALIBUT	. 0.0	0.0	0.0	0.0	15.7	70.5	25.6	20.9	6.6	27.8	21.2
OTHER ELTEISH	10.6	17.9	13.7	6.6	14_6	47.6	0.0	9.5	21.2	0.0	0.0
TOT FLATFISH	1037.3	1160.3	1767.0	1286.0	743.0	5599.3	20347.6	7518.4	5390.8	1758.2	. 10117.7
CHATEC	0.0	0.0	· 0.0	n .	0 0	ດັດ	0.0		· n n		0.0
TOT ELASMOBRH	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
			•		, a a.		·			• • •	
RED KING CRAB	.v U.U	. 0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	. 0.0
BLUE KING CRAB	. 0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
TANNER, BAIRDI	0.0	0.0	. 0.0	0,0	0.0	0.0	0.0	0.0	0.0	11.2	1.5
TANNER, OPILIO	242.5	11.9	0.0	0.4	0.0	0.0	0.0	0.0	9.7	. 112.7	521.6
TANNER, HYBRID	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	. 0.0	0.0	0.0
OTHER CRAB	12.1	6.0	7.7	. 9.5	° 7.7	210.5	25.6	36.6	84.7	270.3	1515.9
SNAILS	0.0	63.5	0.0	0.0	0.0	0.0	. 0.0	0.0	28.9	.0.0	0.0
SHRIMP	10.6	13_9	. 3.7	6.0	8.2	3.7	0.0	7.3	2.9	6.0	0.0
STARFISH	286.4	616.0	1876.6	982.6	293.2	714.3	858.7	534.8	567.5	446.7	57.1
SOUID	0.0	0.0	0.0	0.0	<u> </u>	. 0.0	0.0	. 0.0	0.0	0.0	0.0
OCTOPUS	ñ ñ	·	· n n	n n	0.0	0.0	n n	n n	0.0	Ý Ň Ň	. <u></u>
OTHED INVEDTO	0.0	302 0	0.0	220 7	77.3	 	·	 	n n	774 0	550 1
TOTAL INVERTS	1475.1	1013.2	1888.9	1219.2	386.3	928.6	884.3	578.7	693.6	1623.7	2655.5
				0.0	0.0	0 0	0.0	0.0	· • •	0 0	
EMPLI SHELLS	U.U		0.0	0.0	. 0.0		. 0.0	/10.0	10.0	400.0	
UINER	547.0	2/0.5	202.5	0.0	Ū.U	. U.U	Y8.8	419.5	19.2	120.2	0.0
	7542 0	2450 1	/150 7	2805 4	1497 7	7715 /	222/4 E	0410 7	8116 8	5411 0	1/005 0

. '

• •* • • • • •

115

Table A-1.--Continued.

				• •	•				· ·			
HAUL NO.	182	- 183	184	185	186	- 187	188	189	190	191	192	
MONTH (DAY (NEAD		((44 (00	((11) (00)				((17)00				7 77 700	
MUNIH/DAT/TEAR	6/11/90	6/11/90	: 6/11/90	6/11/90	6/13/90	0/13/90	6/13/90	6/13/90	6/13/90	6/13/90	6/13/90	
LATITUDE START	57 18.9	57 38.6	57 59.4	58 18.9	58 39.1	59 1.1	59 19.4	59 39.1	59 58.6	60 18.9	60 38.6	
LONGITUDE START	169 36.0	169 38.9	169 41.6	169 44.0	169 46.1	169 49.9	169 51.8	169 55.0	169 57.6	170 1.9	170 4.0	
LATITUDE END	57 20.4	57 40.1	58 0.8	58,20.5	58 40.6	59 2.6	59 21.0	59 40.6	60 0.1	60 20.4	60 40.2	
LONGITUDE END	169 35.9	169 39.0	169 41.6	169 43.8	169 46.6	169 49.8	169 51.7	169 55.0	169 58.1	170 2.1	170 4.0	
LORAN START	34914.00	34720.10	34482.40	34250.50	34007.10	33743.00	33520.60	33283.00	33046.30	32802.70	32565.20	
LOPAN STAPT	18749 40	18703 50	18626 00	18550 20	18471 60	18384 80	18317 80	182/5 00	60063 00	07 04084	48876 50	
	7/000 /0	3/703 50	7//45 40	\$/370 50	77090 /0	7777/ 20	77501 70	7774/ 70	77029 10	7070/ 90	325/4 10	
LORAN END	107/0 10	19409 (0	19400.00	195// 40	10/(5 00	33724.20	33301.30	33204.70	JJU20.10	32104.00	32340.10	
LUKAN ENU	10/40.10	10090.00	10021.00	10744.00	10402.00	10300.00	10312.00	49131.30	49055.50	48902.30	40000.00	
GEAR DEPTH		57	- 36	56		52	51	32	. 27	20	25	
DURATION IN HOURS	0.50	0.50	0.50	0.50	0.50	0.50	0.50	0.50	0.50	0.50	0.50	
DISTANCE FISHED	1.49	1.50	1.41	1.64	1.52	1.53	1.57	1.50	1.53	1.51	1.57	
POLLOCK	813.5	245.8	287.0	221.3	346.3	632.9	979.1	1401.7	611.8	277.3	645.7	-
PAC COD	259.3	130_1	181.4	323.2	7.7	132.3	72 1	81.6	80.0	119.9	34.8	
PAC OC PEPCH	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
		. 0.0	0.0	0.0 0 ∩	0.0	0.0	0.0	. 0.0	0.0	0.0	. 0.0	
CARLER REFISH	. 0.0	0.0	. 0.0	0.0	. 0.0	0.0	0.0	0.0	0.0	0.0	0.0	
SABLETISH	0.0	0.0	0.0		0.0	0.0	· U.U	0.0	0.0		· U.U	
PAC HERRING	0.0	0.0	4.9	39.5	- 18.5		159.0	11.0	6.2	15.7	142.0	-
ATKA MACKEREL	0.0	0.0	0.0	0.0	_0.0	0.0	0.0	0.0	0.0	0.0	0.0	
SCULPINS	164.5	6.8	17.4	43.0	32.8	15.2	26.7	0.0	36.4	40.3	93.0	
EELPOUTS	0.0	1.5	0.4	0.7	20.1	65.7	117.9	63.9	33.3	0.0	12.1	
OTHER RNDFISH	29.5	1.3	9.7	78.9	13.7	12.6	11.5	20.3	7.3	6.4	35.1	
TOT ROUNDFISH	1266.8	385.6	500.9	706.6	439.2	868.6	1366.2	1578.5	774.9	457.7	962.8	
					· · · · · · .							
YELLOW SOLE	286.2	191.8	423.3	729.3	210.5	626.1	987.7	972.2	1394.9	542.3	856.3	
ROCK SOLF	4814.3	286.6	513.7	743 6	88.0	56.0	139.1	448.2	181.9	40.8	15.7	
FLATHEAD SOLE	25 1	- 44 1	50 7	25 1	0.0	ññ	4.4	0.0	0.0	0.0	0.0	
ALASKA DIATCE	102 7	114 /	1180 /	1052 7	407.0	1705 0	1708 /		- 7067 6	1290 0	1/34 3	
ALASKA PLATCE	102.7	110.4	1107.4	1052.7	403.9	1775.0	1300.4	2141.1	2947.4	1009.0	1,420.2	
GREENLAND IBI	0.0	. 0.0	0.0	0.0	0.0	0.0	0.0	0.0	.0.0	0.0	0.0	
AKKOWIOUTH FL	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
PAC HALIBUT	18.7	0.0	10.1	0.0	7.3	2.9	0.0	0.0	10.6	18.7	13.2	
OTHER FLTFISH	0.0	0.0	.0.0	0.0	17.2	· 8.6	20.9	30.2	9.0	1.8	6.2	
TOT FLATFISH	5247.0	638.9	2196.3	2550.8	726.9	2488.6	2460.6	3591.8	4543.7	2292.6	2317.5	
	47.0			:0						·		
SKATES	17.9	48.9	0.0	0.0	0.0	0.0	0.0	0.0	. 0.0	0.0	0.0	
TOT ELASMOBRH	17.9	48.9	0.0	0.0	010	0.0	. 0. 0	. 0.0	0.0	0.0	0.0	
RED KING CRAB	0.0		0.9	0.0	0.0	0.0	0:0	0.0	0.0	0.0	0.0	•
BILLE KING CRAP	01 3	1 1	0,0			0.0	0 0	0.0		0,0	<u>0</u> 0	
TANNED DAIDDI	145 7	27 4	/7 0	.11/ 0	104.0	0.0	0.0	0.0	. 0.0	· 0.0	0.0	
TANNER, BAIRDI	77 5	77.0	43.7	1105 0	152/ 0	147/ 0	0.0	0.0	0.0	0.0	105 3	
TANNER, OPILIO	31.5	11.2	119.3	1105.0	1524.9	10/4.2	09.7		0.0	1.3	105.2	'
TANNER, HYBRID	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	. 0.0	0.0	
OTHER CRAB	163.6	19.4	17.4	0.0	. 0.0	0.7	. 0.0	. 0.7	3.1	0.9	. 4.9	
SNAILS .	0.0	0.0	: 0.0	. 0.0	0.0	0.0	0.0	. 0.0	·0.0	0.0	0.0	
SHRIMP	0.0	0.0	0.0	0.0	0.0	2.0	1.8	0.7	· 1.8	0.9	· 1.5	
STARFISH	536.4	1276.5	311.3	71.9	69.0	56.7	73.9	93.0	69.7	72.3	48.9	
SOUTD	0.0	0 0	0 0	0.0	0 0	0.0	<u>,0 0</u>	·	0.0	0.0	. 0.0	
OCTOPUS	0.0				<u> </u>	0.0	0.0	· 0.0	·	0.0	ñ n	
OTHED INVERTS	· · · · ·	0.0	102 5	. 211 6	10.0	×04 7	710 0	· U.U	707.7	1107 0	1027 /	÷.,
TOTAL INVENTO	9.4 000 F	1/11 /	176.7	1525.7	370.0	37/0 7	. / 10.0	17.0	371.3	1107.0	1021.4	`
IUTAL INVERTS	2.044	1411.0	003.2	1525.2	2097.7	2340.2	663.4	190.3	4/8.4	1200.3	1187.9	
FMPTY SHELLS	152 1	327 /	·	0.0		· · · · • •			 	n n	. 0.0	·
OTHED		50 /	970 e	579 0	171	14 6	0.0	1153 4	731 /	0.0	0.0	
UINER	0.0	20.4	. 0/0.0	520.0	. 41.4	10.5	·v.v	1152,0	<u>,</u> 321.4	0.0	. 0.0	
TOTAL CATCH	7682.3	2870.9	4253.2	5310.5	3311.1	5714.0	4710 2	6513 1	6118.5	4018 A	44AÅ 1	
		20/01/		22,013		2114.0				4010.0	4400.1	

•..

117

.

. •

• •

.

--

Table A-1. --Continued.

HAUL No.	217	218	219	220	221	222	243	244	245	246	247
MONTH/DAY/YEAR	6/17/90	6/17/90	6/17/90	6/17/90	6/17/90	6/17/90	6/19/90	6/20/90	6/20/90	6/20/90	6/20/90
LATITUDE START	58 0.9	57 40.5	57 20.0	57 0.9	56 40.9	56 20.8	57 20.0	56 40.0	56 58.8	57 39.0	57 59.1
LONGITUDE START	1/0 57.9	170 54.2	170 51.0	170 46.7	170 43.8	170 41.2	172 3.5	171 58.6	172 2.2	172 9.7	172 13.6
LATITUDE END	57 59.4	57 38.9	57 18.5	56 59.4	56 39.4	56 19.3	57 20.0	56 41.5	57 0.3	57 40.5	58 0.6
LUNGITUDE END	1/0 5/.8	170 54.2	1/0 51.2	170 46.7	170 43.7	170 41.2	172 6.3	171 58.2	172 2.0	172 9.7	172 13.3
LURAN START	49933.10	50049.20	50151.00	35089.50	50100.00	50015.10	50161.90	50167.10	50183.30	18030.00	17994.50
LUKAN STAKT	183/0.90	18457.00	18518.40	18514.50	18405.60	18271.00	34781.40	34992.80	34910.50	34617.90	34426.40
LUKAN END	49942.00	50058.40	50156.80	35094.20	50103.70	50008.60	50162.00	50169.30	50183.20	18030.00	17994.70
CEAD DEDTH	10302.20	10401.30	18218.40	18507.10	18395.70	18260.20	34/74.80	34988.90	34903.40	34604.90	34412.50
DUDATION IN NOUDE	40	47	. 44		01	65	59	69	63	57	56
DISTANCE FIGHED	0.50	1 50	0.00	0.50	0.50	0.50	0.50	0.50	0.50	0.50	0.50
DISTANCE FISHED	1.47	1.17		1.51	1.50	1.40	1.51	1.52	1.55	1.52	1.50
POLLOCK	2377.5	9274.9	633.8	1636.7	3357.0	14709.7	4795.5	2442.3	2495.6	11196.9	6166.1
PAC COD	353.0	650.6	282.4	165.6	599.7	1179.5	0.0	766.1	1175.1	372.4	390.2
PAC UL PERCH	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
CARLEFICH	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
SABLEFISH	0.0	U.U	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
ATKA MACKEDEL	· · · · ·	3.3	0.7	0.0	0.0	0.0	0.0	0,0	0.0	0.0	0.0
SCHIDING	0.0	107 4	10(0	25.1	0.0	0.0	0.0	0.0	0.0	0.0	0.0
SCULPINS	0.4 3/ E	10/.0	194.0	25.1	14.0	2.0	4.0	0.9	25.1	51.1	8.6
OTHER PADEICH	24.5	77	22.3	99.2	27.4	0.0	190.5	0.0	00.4	111.3	/1.4
	7.J 274/ 9	10207 0	1170 9	1077 0	/01/ 0	15801 3	40.J	7011.0	4.0	3.3	3.3
TOT ROOMDETSH	2104.0	10203.0	1137.0	1937.9	4014.0	12071.2	2020.2	3211.0	3/00.2	11/35.0	0039.7
YELLOW SOLE	, 45.4	63.1	2.2	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
ROCK SOLE	1//.5	765.4	73.4	36.4	0.0	0.0	189.2	0.0	34.8	254.6	340.6
FLATHEAD SOLE	131.0	147.5	81.8	163.1	378.5	646.8	275.6	. 71.9	290.8	275.8	334.0
ALASKA PLAICE	103.4	156.7	0.0	24.3	.0.0	0.0	189.2	0.0	0.0	178.4	581.4
GREENLAND TBT	0.0	0.0	1.3	36.4	0.0	0.0	0.0	0.0	0.0	0.0	0.0
	0.0	27.3	16.5	1/3./	882.3	654.8	348.6	105.4	620.4	79.6	39.9
PAL MALIBUI	238.8	20.5	10.8	212.5	19.4	517.6	0.0	8.8	561.7	0.0	41.4
TOT ELATEICH	715 0	1104 5	194 1	0.0	321.2	312.0	39.2	07.0	/9.6		0.0
IUI FLAIFISH	113.0	1100.3	100.1	040.4	1007.4	2131.9	1041.7	255.1	1587.5	788.4	1337.3
SKATES	114.6	11.7	104.7	209.4	455.0	0.0	2174.9	190.0	1424.2	376.6	863.8
TOT ELASMOBRH	114.6	11.7	104.7	209.4	455.0	0.0	2174.9	190.0	1424.2	376.6	863.8
RED KING CRAB	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
BLUE KING CRAB	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
TANNER, BAIRDI	· 31.1	181.0	460.5	65.3	27.1	135.6	94.6	30.6	19.8	23.4	0.0
TANNER, OPILIO	308.0	2237.0	541.5	1214.1	165.8	37.5	2342.4	33.1	265.9	1144.6	4913.7
TANNER, HYBRID	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
OTHER CRAB	0.0	15.9	6.0	9.7	0.0	0.0	0.0	0.0	0.0	0.0	0.0
SNAILS	0.0	0:0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
SHRIMP	0.0	10.6	0.2	7.3	10.8	7.9	58.0	21.4	0.0	0.0	33.3
STARFISH	2605.9	733.7	681.7	685.4	346.6	424.6	20.3	161.4	1493.6	21.2	112.9
SQUID	0.0	0.0	0.0	0.0	0.0	4.0	0.0	2.9	0.0	0.0	0.0
OCTOPUS	0.0	15.9	0.0	.12.1	0.0	0.0	0.0	51.6	0.0	0.0	0.0
OTHER INVERTS	176.8	1757.1	143.5	96.1	94.6	271.4	301.2	37.9	59.5	334.0	194.2
TOTAL INVERTS	3121.8	4951.2	1833.4	2090.0	644.9	881.0	2816.4	338.9	1838.9	1523.2	5254.1
EMPTY SHELLS	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0		0 0	0.0
OTHER	438.9	83.1	1590.6	1143.5	262.1	117.9	452.6	87.5	410 1	307 5	157 0
•										301.3	,

120

	HAUL No.	312	313	314	315	316	317	318	319	320	321	322	
		• .		-	_								
	MONTH/DAY/YEAR	6/28/90	6/28/90	6/29/90	6/29/90	6/29/90	6/29/90	6/29/90	6/29/90	6/29/90	6/30/90	6/30/90	-
	LATITUDE START	61 20.6	61 0.8	60 40.6	60 20.6	60 0.5	59 41.2	59 20.7	59 0.6	58 42.2	58 59.1	59 40 6	
•	LONGITUDE START	176 57.9	176 57.9	176 47.7	176 42.8	176 43.1	176 31.6	176 22.9	176 18.9	176 12.5	177 35 8	177 47 6	-
_	LATITUDE END	61 19.0	60-59.2	60 39.1	60 19.0	59 59.0	59 39.7	59 19 3	58 59 1	58 40.7	59 0 6	50 41 8	
	LONGITUDE END	176 57.9	176 57.9	176 47.7	176 42.8	176 43.0	176 31 5	176 22.8	176 18 8	176 12 1	177 36 0	177 44 4	1 A.
	LORAN START	16593.40	16584.50	16615.20	16624.30	16608.30	16645 00	16668 00	14444 70	16673 10	14741 50	14282 10	
	LORAN START	32276.70	32454.50	32637.20	32817 70	32005 10	33171 20	33354 10	33525 80	77491 10	33//4 40	7711/ 50	
	LORAN END	16593.00	16583 70	16614.50	16623 10	16607 50	144/4 20	14444 50	14447 70	14477 20	1424/ 00	14208 70	•
	LORAN END	32290 90	32468 60	32650 30	32832 00	33008 /0	77196 70	10000.00	10003.30	100/3.20	10204.00	10290.70	
	GEAR DEPTH	-63	44	52050.50	52052.00	.77	33104.30	33300.00	22220.20	33073.40	33435.20	33107.00	
	DUPATION IN HOURS	0 50	0.50	0.50	0.50	0 50	0 50	0 50	. 74.	()	/3	104	
	DISTANCE EISHED	1 50	1 50	. 0.30	0.50	0.50	0.50	0.50	0.50	0.50	0.50	0.50	
	DISTANCE FISHED	1.39	1.58	1.40	1.01	1.52	1.51	1.48	1.52	1.51	1.51	1.96	£."
	DOLLOCK	777 4	0,00 0	0074 7	7002 0	74/0 0	7075 5		·			·	- ¹ .
		[23.]	9429.2	9031.3	3002.0	5148.9	/835.5	1344.8	1599.0	16150.0	63.1	45864.0	
	PAL LUD	5/1.9	. 102.9	>85.5	210.3	227.5	281.5	47.4	. 77.2	775.6	267.9	. 83.3	
	PAC OC PERCH	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
	OTHER RCKFISH	0.0	0.0	0,0	. 32.2	0.0	0.0	0.0.	.0.0	0.0	0.0	0.0	
· · ·	SABLEFISH	• 0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
	PAC HERRING	• 0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	. 0.0	0.0	1
	ATKA MACKEREL	0.0	0.0	0.0	0.0	· 0.0	0.0	0.0	0.0	0.0	0.0	0.0	· .
	SCULPINS	28.7	26.0	13.9	23.4	11.9	36.2	0.2	6.4	0.0	21.6	0.0	
	EELPOUTS	43.0	60,0	44.1	50.5	95.2	135.6	4.4	. 0.4	0.0	24	0.0	
	OTHER RNDFISH	4.4	1.8	11.0	1.1	1.8	1.3	0.2	7.7	2.9	13.9	0.0	
	TOT ROUNDFISH	1371.1	10280.9	9683_6	3319.5	3485.3	8290.1	1397 1	1600 7	16028 5	368 8	15017 1	
						2 102 12	02/01/			10720.2	500.0	4,7741.44	
	YELLOW SOLE	0.0	0.0	. 0.0	. 0.0	0.0	ດົດ		0.0		n 'n	0.0	· .·
	ROCK SOLE	12.1	10 1	17.6	0 7	0.0	6.6	0.0	7 1	470 5	/01.3	. 0.0	
	FLATHEAD SOLE	0.0	- 0.0	71 7	22.5	107.8	55 4	33	208 1	017.3	401.2	0.0	
•	ALASKA PLATCE	20	0.0	<u>`</u> 0.0	. 0.0	107.0	0,00	J.J 0.0	290.1	900.3	90.1	13.9	
- × -	CREENI AND TRT	7 3	10.0	70.1	24.0	. 0.0	0.0	0.0	. 0.0	0.0	0.0	0.0	
		C.1	17.0	10.1	20.9	0.0	. 0.0	0.0	0.0	0.0	0.0	0.0	
		0.0	0.0	0.0	. 0.0	0.0	· 0.0	0.0	15.0	459.4	95.5	38.6	
	OTHER FLICK	177 7	77.4	0.0	. 0.0	0.0	0.0	15.9	0.0	0.0	15.2	15.2	
	TOT FLATFICH	200.0	23.0	. 0.0	.	18.5	0.0	0.2	11.9	81.4	20.9	0.0	
	IOI FLAIFISH	200.0	22.0	119.1	02.4	120.1	62.0	19.4	326.1	2180.6	631.0	76.5	
	CKATES	17/ 1	77 (e `e	407 (•					
	TOT ELACMORDU	120.1	23.0	·	107.4	59.5	267.2	0.0	114.6	251.1	135.6	93.3	
	TOT ELASMOBRI	120.1.	23.0	2.2	107.4	59.5	267.2	0.0	114.6	251.1	135.6	93.3	
				• •	· •		• •	•		-	1	- •	· · ·
• ,	RED KING CRAB	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	. 0.0	0.0	0.0	
	BLUE KING CRAB	0.0	. 0.0	<u> </u>	.0.0	0.0	0.0	0.0	.0.0	0.0	0.0	0.0	
	IANNER, BAIRDI	0.0	0.0	9.3	0.0	0.9	23.1	0.7	0.7	2.9	19.4	0.0	
,	TANNER, OPILIO	656.8	570.8	225.8	3136.1	485.2	105.8	0.0	3.5	0.0	0.0	0.0	
	IANNER, HYBRID	0.0	0.0	. 0.0	0.0	0.0	0.0	0.0	0,0	0.0	0.0	0.0	. ·
	OTHER CRAB	0.0	4.0	0.0	0.0	0.9	7.7	0.4	0.2	0.0	. 0.0	5.3	
	SNAILS :	0.0	0.0	0.0	0.0	. 0.0	0.0	0.0	0.0	0.0	0.0	0.0	~
	SHRIMP	9.9	10.4	17.6	· 2.9	10.4	7.7	0.7	. 3.3	0.0	0.4	11 5	
•	STARFISH	1543.7	2127.2	2539.7	233.2	6869.8	6867.0	187.0	54.9	73.9	0.0	0.0	. 2
	SQUID	0.0	0.0	0.0	0.0	0.0	0.0	0.0	กก	0.0	0 n	0.0	
	OCTOPUS	0.0	0.0	0.0	0.0	0.0	0.0	0.0	, 0.0	0.0	0.0 0 0	7/ /	••
	OTHER INVERTS	12.6	47.4	0.0	7.5	0.0	0.0	· 0.0	₹ ₹	20 5	12 2	·	. ¹ •
	TOTAL INVERTS	2222.9	2559.8	2792.4	3379 7	7367.2	7011 4	188 7	0 24	106 7	52.0	42 4	
					-		1011.4	100.7		100.3	52.0	02.0	- ,
	EMPTY SHELLS	0.0	0.0	0,0	: O. N	Ó 0.0	0.0	0.0		0.0	· ·		
	OTHER	147.0	410.3	327.2	546 3	286 4	202 8	2.0	/7 2	י זידע '	70 5	0.0	,
						200.4	204.0	2.2	Ψ/.Z	212.2	70.5	<u>, 1.5</u>	
	TOTAL CATCH	4067.1	13328.1	12927.7	7415.3	11324.5	15833.4	1607 2	2244 5	108/.1 7	-1258 0		
								100114	ç244.J	1704117	1230.0	40101.0	
		-		•.•		· · ·	· •		• •	· -		•	-

125

Table A-1. --Continued.

Table	A-1	-Cont:	inued.
-------	-----	--------	--------

HAUL No. 323 324 325 326 327 328 329 330 331 332 333 MONTY/MAY/YEAA 6/10/00 6/30/00 6/30/00 6/30/00 7/1/00												
PMTH/INAVYLEAR 6/30/90 30/90/90 30/90/90 30/90/90 30/90/90 30/90/90 30/90/90 30/90/90 30/90/90 30/90/90 30/90/90 30/90/90 30/90/90 30/90/90 30/90/90 30/90/90 30/90/90 30/90/90 30/90/90 <t< th=""><th>HAUL No.</th><th>323</th><th>324</th><th>325</th><th>326</th><th>327</th><th>328</th><th>329</th><th>330</th><th>331</th><th>332</th><th>333</th></t<>	HAUL No.	323	324	325	326	327	328	329	330	331	332	333
LATITUDE START 1775.18 LATITUDE END 159.0 60 19.0 60 40.1 60 59.2 62 20.4 62 58.9 63 19.2 63 59.8 63 59.6 63 59.2 74 55.7 173 1.8 LATITUDE END 177 55.1 178 1.5 178 1.0 178 10.0 176 22 1.6 63 0.2 63 20.7 63 6.0 5 63 58.7 63 40.9 64 0.8 LATITUDE END 177 55.1 178 1.5 178 1.6 178 15.0 175 55.5 174 4.1 74 4.9 173 173 18.8 1644.4 60 164915.50 LORAN END 12775.1 178 1.5 1178 1.6 175 15.5 154 174 1.2 174 4.9 173 18.8 1644.4 60 164915.50 LORAN END 12775.1 128 1.8 178 1.0 19 12627.20 LORAN END 12274.10 12261.40 15267.20 LORAN END 12274.10 12261.40 15267.20 LORAN END 12274.10 12261.40 15267.20 LORAN END 12274.10 12261.40 15267.20 DISTANCE FIRED 1.51 1.55 1.52 LORAN END 12274.10 12264.60 3244.4 00 31644.30 JUSAN END 12274.8 00 2244.4 00 16271.4 160.00 37013.4 1100.5 1100.5 1100.5 1100.5 1100.5 100.0 37013.4 00753.40 DISTANCE FIRED 1.51 1.55 1.55 1.59 1.49 LORAN END 22968.7 145 1.50 1.50 1.50 1.50 0.50 0.50 0.50 0.5	MONTH/DAY/YEAR	6/30/90	6/30/90	6/30/90	6/30/90	7/ 1/90	7/ 1/90	7/ 1/90	7/ 1/90	7/ 1/90	7/ 2/90	7/ 2/90
LONGITUDE START 177 55.8 178 1.8 178 10.8 178 17.0 176 0.3 174 43.2 174 49.0 173 26.8 173 30.2 174 55.7 175 1.2 TITUDE END 60 0.5 60 20.5 60 41.6 61 0.7 62 21.6 63 0.2 63 20.7 63 50.5 63 58.7 73 45.0 9 64 0.8 LONGITUDE END 177 55.9 178 1.8 178 10.9 178 16.7 175 58.5 174 41.2 174 49.7 1776 6.0 173 33.2 174 56.1 175 2.0 LONGAN START 15274.10 3261.40 3264.40 1677.50 1709.0 116974.70 1716.40 1713.80 16944.60 1173.80 LONGAN START 3299.00 32794.10 3261.40 32457.20 31775.70 1709.00 116974.70 1716.40 1713.80 16944.60 1713.80 LONGAN START 3299.70 32794.10 3261.40 32457.20 31775.70 17010.0 116974.70 1716.40 1713.80 16944.60 1713.80 LONGAN START 3299.70 32794.10 3261.40 3264.40 1677.50 17010.27 10 1742.60 17132.70 1732.70 17912.70 116942.60 16944.20 LONGAN END 12248.70 132781.80 32647.0 32644.40 31694.30 11701.360 11701.70 17132.70 17132.70 11942.60 16944.20 LONGAN END 12248.70 132781.80 32647.0 3564.47 31694.20 31096.150 17132.70 17132.70 11942.60 16944.20 LONGAN END 12248.70 132781.80 3260.40 31694.30 11701.36 11973.50 1717.20 30784.00 30610.7 30922.40 30751.12 EQUARTION IN HOURS 0.50 0.50 0.55 0.50 0.50 0.50 0.50 0.5	LATITUDE START	59 59.0	60 19.0	60 40.1	60 59.2	62 20.4	62 58.9	63 19.2	63 39.8	63 59.6	63 39.4	63 59.2
LATITUDE END 60 0.5 60 20.5 60 41.6 61 0.7 62 21.6 63 0.2 63 20.7 63 60.5 63 58.7 63 40.9 64 0.8 100KIDDE END 177 55.9 178 1.6 178 10.9 178 16.7 175 8.5 174 45.1 2174 56.7 173 82.0 16975.5 174 55.1 75 2.0 1502.7 15 55.2 15.5 1775.0 1502.6 30 5575.4 55.2 15.5 1775.0 1502.6 30 5575.4 55.2 15.5 1775.0 1502.6 30 5575.4 55.2 15.5 1775.2 1502.5 1775.2 1502.5 1575.2 1502.5 1575.2 1502.5 1575.2 1502.5 1575.2 1502.5 1575.2 1502.5 1575.5 1577.5 15.5 15.5 15.5 15.5 15.	LONGITUDE START	177 55.8	178 1.8	178 10.8	178 17.0	176 0.3	174 43.2	174 49.9	173 26.8	173 30.2	174 55.7	175 1.8
LONGLIDUE END 177 55.9 178 1.8 178 10.9 178 16.7 175 58.5 174 41.2 174 49.0 173 23.7 173 33.2 174 56.1 175 2.0 1028A START 12700.0 16270.9 1028A. 610 16270.9 1028A. 610 16270.5 1028A. 610 16270.5 1028A. 610 16270.5 1028A. 610 16270.5 10270.4 1028A. 610 16271.5 1028A. 610 16271.5 1028A. 610 16271.5 1028A. 610 16271.5 1028A. 610 16273.5 1028A. 610 1628A. 610 16	LATITUDE END	60 0.5	60 20.5	· 60 41.6	61 0.7	62 21.6	63 0.2	63 20.7	63 40.5	63 58.7	63 40.9	64 0.8
LORAM START 16277.20 16227.90 16228.40 16797.50 1700.00 16974.00 1718.80 1694.60 1694.60 1975.50 LORAM START 1296.00 3277.40 31705.90 31274.10 31094.20 30764.00 30671.10 1692.20 30673.50 1716.00 1713.20 1694.20 30075.10 30772.20 3062.70 30701.30 3075.1 1716.00 1713.20 1694.20 30772.20 3062.70 30701.30 3075.1 1.50 1.50 1.50 0.50	LONGITUDE END	177 55.9	178 1.8	178 10.9	178 16.7	175 58.5	174 41.2	174 49.9	173 23.7	173 33.2	174 56.1	175 2.0
LORAM START DRAM EMD 32960.90 32774.10 32647.20 31705.90 31274.10 310922.60 30732.40 LORAM EMD 16277.10 16271.40 16030.00 17013.60 17372.12 1662.20 16271.40 16030.00 17013.60 17372.12 1662.60 16071.40 1571.40 1712.70 1662.60 16071.40 1571.40 1712.70 1662.20 16671.40 1571.40 1712.70 1662.60 16071.40 157 153 150 0.	LORAN START	16274.20	16277.90	16270.90	16268.40	16797.50	17009.00	16974.70	17169.40	17138.80	16944.60	16915.50
LORAM END 16276.10 16280.00 16271.10 16271.40 16803.00 17013.60 16973.50 17176.00 17176.00 17176.27 16642.60 16974.20 GEAR EPTH 77 83 89 87 47 41 43 30772.20 30623.70 30613.00 30071.10 GEAR DEFTH 77 83 89 67 47 41 43 30772.20 30623.70 30613.00 300751.10 GEAR EPTH 0.50	LORAN START	32960.90	32794.10	32614.80	32457.20	31705.90	31274.10	31094.20	30784.00	30610.70	30922.60	30763.40
LORAM FND 32948.70 32781.80 322804.60 3244.90 31694.30 31260.00 3100.50 30771.20 30623.70 30910.30 30751.10 DURATION IN HOURS 0.50 <td>LORAN END</td> <td>16276.10</td> <td>16280.00</td> <td>16271.10</td> <td>16271.40</td> <td>16803.00</td> <td>17013.60</td> <td>16973.50</td> <td>17176.00</td> <td>17132.70</td> <td>16942.60</td> <td>16914.20</td>	LORAN END	16276.10	16280.00	16271.10	16271.40	16803.00	17013.60	16973.50	17176.00	17132.70	16942.60	16914.20
GEAR DEPTH 77 B3 B9 B7 47 41 43 33 30 45 42 DUNATION IN HOURS 0.50<	LORAN END	32948.70	32781.80	32604.60	32444.90	31694.30	31260.00	31080.50	30772.20	30623.70	30910.30	30751.10
DURATION IN HOURS 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.5	GEAR DEPTH	π	83	89	87	47	41	43	33	30	45	42
DISTARCE FISHED 1.50 1.50 1.60 1.60 1.55 1.52 1.55 1.55 1.59 1.49 1.52 POLLOCK 5995.9 1831.6 5375.8 26686.1 0.9 0.4 0.0	DURATION IN HOURS	0.50	0.50	0.50	0.50	0.50	0.50	0.50	0.50	0.50	0.50	0,50
POLLOCK 5955.9 1831.6 5375.8 24686.1 0.9 0.4 0.0 2.2 0.9 0.4 5.7 PAC COD 248.9 586.0 554.9 0.0	DISTANCE FISHED	1.51	1.50	1.50	1.50	1.40	1.55	1.52	1.55	1.59	1.49	1.52
Tr.L. LOW 246.7 386.0 554.7 0.0	POLLOCK	5995.9	1831.6	5375.8	24686.1	0.9	0.4	0.0	2.2	0.9	0.4	5.7
D. U. CERLT D. U. U.U. U.U.U. U.U.U.U.U.U.U.U.U.U.U.U.U.U.U.U.U	PAG OG DEDGU	248.9	586.0	>>4.9	0.0	0.0	0.0	0.0	0.0	35.5	0.4	0.4
UNDER, RAKFISH U.U	TAL UL PERCH Other Devetor	0.0	0.0	U.O	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
APACL FISH U.U	VINER RUNFISM . Cadieeten	0.0	0.0	0.0	0.0	0.0	U.O	0.0	0.0	0.0	0.0	0.0
TACK MACKREPL 0.0 0	OVOTELIDU OVOTELIDU	0.0	0.0	0.0	, 0.0	U.0	U.O	0.0	0.0	0.0	0.0	0.0
ACC MARKELL 10.3 10.3 0.0 <	ATVA MARVEDEI	0.0	0.0	0.0	0.0	0.0	0.4	0.0	0.0	0.0	0.2	0.2
Calcel NZ Color	CONDING	15 2	3 3	0.0 84 A	110 5	15 7	14.9	0.0	0.0	0.0	0.0	0.0
Childrein Control Contro Control <thcontrol< th=""> <t< td=""><td>FELDOUTS</td><td>67.7</td><td>43.2</td><td>64.4 70 8</td><td>40.6</td><td>ر ۲۱ ۲۰</td><td>10.0</td><td>0.0</td><td>8.4</td><td>0.0</td><td>0.4</td><td>0.0</td></t<></thcontrol<>	FELDOUTS	67.7	43.2	64.4 70 8	40.6	ر ۲۱ ۲۰	10.0	0.0	8.4	0.0	0.4	0.0
TOT ROUNDFISH 6335.9 2466.5 6066.0 24870.2 247.4 183.6 63.1 81.1 70.8 39.7 63.3 YELLOW SOLE 0.0	OTHER RNDEISH	8.2	2 4	1 1	4 2	26.7	150 0	57 3	4.0	2.2	11.2	. (.1
Tellow Sole 0.0 0.0 0.0 0.0 0.7 1.3 0.0 0.0 0.0 0.0 0.0 PELLOW SOLE 52.5 130.1 110.9 0.0	TOT ROUNDFISH	6335.9	2466.5	6066 0	24870 2	47 4	187.6	67.5	81 1	23.4 70 B	20.9	43.2
FELLOW SOLE 0.0 0.0 0.0 0.0 0.0 0.7 1.3 0.0	·						105.0	05.1	01.1	70.0		
RCUCK SOLE 52.5 130.1 110.9 0.0 0.2 0.0 0.0 0.2 0.0	YELLOW SOLE	0.0	0.0	0.0	0.0	0.7	1.3	0.0	0.0	0.0	0.0	0.9
PLAIMEAD SULE BY, Y 40.6 172.0 0.0 </td <td>RUCK SULE</td> <td>52.5</td> <td>130.1</td> <td>110.9</td> <td>0.0</td> <td>0.2</td> <td>0.0</td> <td>. 0.0</td> <td>0.2</td> <td>0.0</td> <td>0.0</td> <td>0.0</td>	RUCK SULE	52.5	130.1	110.9	0.0	0.2	0.0	. 0.0	0.2	0.0	0.0	0.0
ALASA FLATCE 0.0 <t< td=""><td>ALASKA DIALCE</td><td>09.9</td><td>40.6</td><td>1/2.0</td><td>0.0</td><td>0.0</td><td>0.0</td><td>0.0</td><td>. 0.0</td><td>0.0</td><td>0.0</td><td>0.0</td></t<>	ALASKA DIALCE	09.9	40.6	1/2.0	0.0	0.0	0.0	0.0	. 0.0	0.0	0.0	0.0
MARCHAND 161 17.2 13.4 27.8 0.0 0.2 0.0	ALASKA PLAILE	17.2	15 /	17.0	0.0	3.3	0.0	0.0	2.0	0.0	0.7	5.5
MARCHORTH TL 0.0 20.7 13.4 0.0	ADDOUTOOTU EI	17.2	12.4	27.0	0.0	0.2	0.0	0.0	0.0	0.0	0.2	0.0
Charles Construction		0.0	11 0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
CITER FISH 226.0 252.7 402.6 0.0 42.1 39.9 22.9 28.4 0.0 74.5 94.8 SKATES 760.2 586.0 214.1 0.0 0.7 0.0 0.	OTHER FLITFISH	66.6	28.0	76.5	0.0	37 7	10.U		24.2	0.0	77 (0.0
SKATES 760.2 586.0 214.1 0.0 0.7 0.0 <t< td=""><td>TOT FLATFISH</td><td>226.0</td><td>252.7</td><td>402.6</td><td>0.0</td><td>42.1</td><td>39.9</td><td>22.9</td><td>28.4</td><td>0.0</td><td>74.5</td><td>94.8</td></t<>	TOT FLATFISH	226.0	252.7	402.6	0.0	42.1	39.9	22.9	28.4	0.0	74.5	94.8
COT ELASMOBRH 760.2 586.0 214.1 0.0 0.7 0.0	SKATES	760.2	586.0	214-1	0.0	07	0 0	0.0		0.0	0.0	0.0
RED KING CRAB0.00.00.00.00.00.00.00.00.00.00.0BLUE KING CRAB0.0	TOT ELASMOBRH	760.2	586.0	214.1	0.0	0.7	0.0	0.0	0.0	0.0	0.0	0.0
BLUE KING CRAB 0.0	RED KING CRAB	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
FANNER, BAIRDI4.21.50.0	BLUE KING CRAB	0.0	0.0	0.0	0.0	0.0	0.4	3.3	30.9	24.9	12.8	11.0
TANNER, OPILIO1.37.73094.2625.2491.2379.6285.3199.59.9141.3145.9TANNER, HYBRID0.00.00.00.00.00.00.00.00.00.00.00.00.0DTHER CRAB4.20.40.08.40.00.00.00.00.00.00.00.00.00.00.0SNAILS0.00.00.00.00.00.00.00.00.00.00.00.00.00.0SNAILS0.00.00.00.00.00.00.00.00.00.00.00.00.0SNAILS0.00.00.00.00.00.00.00.00.00.00.00.00.0SNAILS0.00.00.00.00.00.00.00.00.00.00.00.0SNAILS0.00.00.00.00.00.00.00.00.00.00.00.0STARFISH4168.5918.976.5159.412.314.61460.3128.858.00.00.00.0SQUID1.30.00.00.00.00.00.00.00.00.00.00.00.00.0DTHER INVERTS320.3322.5145.369.4277.6105.60.0662.33872.4308.9145.3TOTAL	TANNER, BAIRDI	4.2	1.5	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
TANNER, HYBRID 0.0	TANNER, OPILIO	1.3	7.7	3094.2	625.2	491.2	379.6	285.3	199.5	9.9	141.3	145.9
DTHER CRAB 4.2 0.4 0.0 8.4 0.0 0.0 0.0 75.2 71.7 0.4 2.9 SNAILS 0.0 <	TANNER, HYBRID	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
SNAILS 0.0<	DTHER CRAB	4.2	. 0.4	0.0	8.4	0.0	0.0	0.0	75.2	71.7	0.4	2.9
SHRIMP 37.3 24.5 44.3 53.1 0.7 7.9 11.5 9.0 15.0 0.0 1.8 STARFISH 4168.5 918.9 76.5 159.4 12.3 14.6 1460.3 1283.8 58.0 0.0 <td< td=""><td>SNAILS</td><td>0.0</td><td>0.0</td><td>0.0</td><td>0.0</td><td>0.0</td><td>0.0</td><td>0.0</td><td>0.0</td><td>0.0</td><td>0.0</td><td>0.0</td></td<>	SNAILS	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
START ISH 4168.5 918.9 76.5 159.4 12.3 14.6 1460.3 1283.8 58.0 0.0 0.0 0.0 SQUID 1.3 0.0	SHRIMP	37.3	24.5	44.3	53.1	0.7	7.9	11.5	9.0	15.0	. 0.0	1.8
SOLID T.S U.U U.U <thu.u< th=""> <thu.u< td="" th<=""><td>STARFISH</td><td>4168.5</td><td>918.9</td><td>76.5</td><td>159.4</td><td>12.3</td><td>14.6</td><td>1460.3</td><td>1283.8</td><td>58.0</td><td>0.0</td><td>0.0</td></thu.u<></thu.u<>	STARFISH	4168.5	918.9	76.5	159.4	12.3	14.6	1460.3	1283.8	58.0	0.0	0.0
Differ Diverts Joint 25.6 D.0 D.0 <thd.0< th=""> D.0 D.0</thd.0<>	SQUID	1.3	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
JINEK INVERIS J20.3 J22.5 145.3 69.4 2/7.6 105.6 0.0 662.3 3872.4 308.9 145.3 IOTAL INVERTS 4537.1 1301.2 3360.3 915.6 781.8 508.2 1760.4 2260.6 4051.9 463.4 306.9 IMPTY SHELLS 0.0 0.0 0.0 0.0 0.0 0.0 0.0		0.0	25.6	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
MPTY SHELLS 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	THER INVERTS	520.5 4537.1	522.5 1301.2	145.3 3360.3	69.4 915.6	277.6 781.8	105.6 508.2	0.0 1760.4	662.3 2260.6	3872.4 4051.9	308.9 463.4	145.3
	NDTV CHEILS	0.0	0.0	0.0	0.0							
ITHER 366.2 209.4 77.6 670.2 6.4 19.4 313.7 249.6 0.0 41.5 20 R	THER	366.2	209.4	77.6	670.2	6.4	0.0 19.4	313.7	U.U 249.6	0.0 0.0	0.0 61.5	0.0 29.8

• ,

APPENDIX B

Abundance Estimates for Principal Fish Species

Appendix B presents estimates of population size in terms of number of individuals and. biomass estimates in metric tons with confidence intervals for the principal species of fish sampled during the 1990 cooperative-survey. Estimates are given by subarea, standard U.S. area (SA), north shelf (NS), western shelf (WS), and for all areas combined.

List of Tables

<u>Tabl</u>e

<u>Page</u>

B-l.	Walleye pollock	134
в-2.	Pacific cod	136
в-3.	Yellowfin sole	138
B-4.	Rock sole	140
B-5.	Alaska plaice	142
В-б.	<u>Hipploglossoides</u> spp	144
B-7.	<u>Atheresthe</u> s spp	146
в-8.	Pacific halibut	148

133

Table B-1.-- CPUE, population, and biomass for walleye pollock.

CD	110
u٣	UC.

VARIANCE MEAN CPU NO/HA	MEAN CPUE NO/HA	VARIANCE MEAN CPUE KG/HA	MEAN CPUE KG/HA	HAULS WITH L-F	HAULS WITH NUMS.	HAULS WITH CATCH	TOTAL HAULS	STRATUM
.786899E+0	33.04	.221474E+02	15.57	22	28	28	31	1
.117065E+0	104.31	.966964E+01	12.84	11	15	15	16	2
.833967E+0	87.72	.455943E+03	45.30	34	36	36	36	3
.260660E+0	196.79	.945094E+02	31.25	30	36	36	36	4
.372619E+0	43.52	.227048E+02	14.67	10	13	13	13	5
.113258E+0	607.53	.186936E+04	223.91	34	37	37	37	6
.207108E+0	31.44	.142808E+01	3.33	14	22	22	23	7
.338975E+0	95.94	.297069E+00	0.91	5	17	17	17`	8
.688774E+0	400.02	.298991E+05	268.30	3	4	4	4	9
.732839E+0	31.58	.372108E+02	10.03	16	32	32	34	14
.306725E+0	270.44	.166656E+03	49.11	9	10	10	10	15
.870521E+0	204.13	.248124E+04	110.41	10	19	19	19	16
.667869E+0	207.71	.106562E+03	68.05	141	165	165	169	SA
.106274E+0	87.54	.203365E+03	24.20	22	43	43	44	NS
.147973E+0	116.80	.188020E+03	42.93	35	61	61	63	WS
.347372E+0	166.99	.546090E+02	54.82	198	269	269	276	TOTAL

POPULATION

STRATUM	POPULATION	VARIANCE	EFF. DEG. FREEDOM	95% CONFIDENCE LI LOWER	MITS - POPULATION UPPER
 1	257,264,495	.477169517E+16	30.00	116,208,327	398.320.664
2	427,970,954	.197046335E+17	15.00	128,835,678	727,106,229
3	908,058,590	.893639593E+17	35.00	300,765,936	1.515.351.244
4	2,117,600,756	.301822710E+18	35.00	1,001,527,289	3,233,674,224
5	168,816,073	.560736443E+16	12.00	5,647,460	331,984,685
6	5,744,973,845	.101275659E+19	36.00	3,702,670,753	7,787,276,936
7	228,963,698	.109844829E+17	. 22.00	11,594,221	446,333,176
8	537,427,861	.106374047E+18	16.00	0	1,228,866,590
9	462,741,394	.921701735E+17	3.00	0	1,428,781,991
14	276,685,514	.562465794E+16	33.00	124,012,656	429,358,372
15	693,607,192	.201758564E+18	9.00	0	1,709,642,007
16	823,859,705	.141793476E+18	18.00	32,718,186	1,615,001,223
SA	9,624,684,713	.143402695E+19	65.59	7,232,062,443	12,017,306,982
NS	1,229,132,953	.209528703E+18	12.39	231,710,839	2,226,555,067
WS	1,794,152,411	.349176697E+18	21.61	568,601,439	3,019,703,382
TOTAL	12,647,970,076	.199273235E+19	97.96	9,842,567,427	15,453,372,725

.

135 Table B-1.--Continued.

.

DMASS					
TRATUM	BIOMASS MT	VARIANCE BIOMASS	EFF. DEG. FREEDOM	95% CONFIDENCE LOWER	E LIMITS - BIOMAS UPPER
1	121,223	.134300360E+10	30.00	46,389	196,056
. 2	52,661	.162761408E+09	15.00	25,474	79,848
- 3	468,900	.488566801E+11	35.00	19,866	917,933
4.	336,263	.109434171E+11	35.00	123,747	548,780
5	56,906	.341674117E+09	12.00	16,628	97,183
- 6	2,117,351	.167159228E+12	36.00	1,287,629	2,947,073
~`7	24,270	.757417188E+08	22.00	6,220	42,320
8	5,106	.932233611E+07	16.00	0	11,579
9	310,367	.400103369E+11	3.00	· 0·	946,849
14	87,836	.285599189E+10	33.00	0 '	196,627
15	125,943	.109623415E+10	.9.00	51,049	200,836
16	445,613	.404153049E+11	18.00	23,237	867,989
SA	3,153,303	.228806764E+12	61.75	2,196,947	4,109,659
NS	339,743	.400954009E+11	3.01	0	976,901
WS	659,392	.443675309E+11	21.60	222,533	1,096,251
TOTAL	4,152,438	.313269696E+12	66.64	3,034,334	5,270,542
	1				a server a s
		,			

			i i		
·	· · · · ·		, ,	·	
		CONFIDEN	CE LIMITS		
1	TOTAL BI	OMASS (T)	TOTAL	POPULATION	
	LOWER	UPPER	LOWER	UPPE	R
80.000 PERCENT	3,427,517	4,877,358	10,824,740,683	14,471,19	9,470
90.000 PERCENT	3,218,019	5,086,856	10,300,739,275	14,995,20	0,877
95.000 PERCENT	3,034,334	5,270,542	9,842,567,42	7 15,453,37	2,725

Table	в-2.	CPUE,	population,	and	biomass	estimates	for
		Pacifi	c cod.				

CPUE

STRATUM	TOTAL : HAULS	HAULS WITH CATCH	HAULS WITH NUMS.	HAULS WITH L-F	MEAN CPUE Kg/ha	VARIANCE MEAN CPUE KG/HA	MEAN CPUE NO/HA	VARIANCE MEAN CPUI NO/HA
1	31	24	24	12	8.09	.128743E+02	6.28	.339944E+01
ź	16	14	14	8	6.32	.205931E+01	7.66	.489417E+01
3	36	34	34	28	16.61	.132898E+02	11.30	.926279E+01
4	36	33	33	14	10.14	.740759E+01	8.21	.251714E+01
5	13	. 13	13	9	13.24	.230970E+02	3.60	.147062E+01
6	37	36	36	24	24.87	.370951E+02	8.94	.430413E+01
7	23	12	12	0	0.42	.549030E-01	0.94	.173558E+00
8	17	6	6	1	0.64	.344905E+00	0.53	.184832E+00
9	4	3	3	· 3	19.43	.536010E+02	10.53	.331143E+02
14	34	19	19	6	5.69	.857582E+01	3.75	.404237E+01
15	10	10	10	5	32.76	.248699E+03	12.54	.452326E+02
16	19	19	19	12 -	45.69	.380221E+03	27.53	.110761E+03
SA	169	154	154	95	14.17	.314917E+01	8.29	.921934E+00
NS	44	21	21	4	2.07	.433470E+00	1.57	.300863E+00
₩S	63	48	48	23	20.72	.359672E+02 🧭	11.47	.102211E+02
TOTAL	276	223	223	122	13.25	.267311E+01	7.69	.775856E+00

		VARIANCE	EFF: DEG.	95% CONFIDENCE LIMIT	S - POPULATIGN
STRATUM	POPULATI	DN POPULATI	ON FREE	DOM LOWER	UPPER
1	48,879,959	.206139668E+15	30.00	19,561,812	78,198,107
2	31,445,275	.823796780E+14	15.00	12,103,626	50,786,924
3	116,954,242	.992557247E+15	35.00	52,952,086	180.956.399
4	88.346.090	.291464326E+15	35.00	53,663,659	123.028.521
5	13,965,970	.221306150E+14	12.00	3,715,259	24.216.680
6	84.564.584	.384876978E+15	36.00	44.751.243	124.377.925
7	6.828.117	.920510942E+13	22.00	535.617	13, 120, 617
8	2,968,116	.580021598E+13	16.00	0	8,073,847
9	12, 179, 321	.443128260E+14	3.00	Ō	33,361,220
14	32,889,420	.310258386E+15	33.00	· 0	68,746,551
15	32, 163, 215	.297532081E+15	9.00	ō	71.180.721
16	111,090,835	.180411672E+16	18.00	21,851,080	200,330,590
SA	384,156,121	.197954851E+16	107.07	295,868,929	472,443,312
NS	21.975.554	.593181514E+14	5.33	2, 174, 155	41,776,954
WS	176,143,470	.241190719E+16	30.05	75,858,457	276,428,483
TOTAL	582,275,145	.445077385E+16	85.82	449,425,093	715,125,197

Table	B-2	-Continue	d.
-------	-----	-----------	----

BIOMASS			· · · · · · · · · · · · · · · · · · ·		
STRATUM	BIOMASS MT	VARIANCE BIOMASS	EFF. DEG. FREEDOM	95% CONFIDENCE LOWER	LIMITS - BIOMAS UPPER
· 1	62.959	.780688420E+09	30.00	5,904	120,014
2	25,947	.346627362E+08	15.00	13,401	38,493
· 3	171,928	.142407295E+10	35.00	95,265	248,590
4	109,084	.857738569E+09	35.00	49,587 -	168,581
5	51,378	.347576639E+09	12.00	10,754	92,002
6 -	235,153	.331706004E+10	36.00	118,272	352,034
7.	3,071	.291191653E+07	22.00	0	6,610
8	3,579	108234729E+08	16.00	, O	10,553
9	22,477	.717275717E+08	3.00	× 0	49,426
14	49,840	.658208139E+09	33.00	0	102,067
15	84,019	.163589464E+10	9.00	0	175,509
16	184,386	.619318023E+10	18.00	19,044	349,728
SA	656,450	.676179936E+10	110.16	493,360	819,539
NS	29,127	.854629612E+08	4.24	3,464	54,790
WS	318,245	.848728301E+10	29.51	130,122	506,367
TOTAL	1,003,821	153345453E+11	82.27	757,064	1,250,579
· •		, ,	:		
10 7 5 6 .			CONFIDENCE	LIMITS	, ,
		TOTAL BIOM	ASS (T)	TOTAL PO	
		LOWER	UPPER	LOWER	UPPER
			1 147 001		668 53/ 270
80.000 PI		043,032	1,105,991	470,010,011	403 378 417
90.000 Pt		191,401 757 061	1 250 570	4/3,1/1,0/3	715 125 107
93.000 Pt	IKUENI	151,004	1,2,0,0,7		

Table B-3. --CPUE, population, and biomass estimates for yellowfin sole.

STRATUM	TOTAL HAULS	HAULS WITH CATCH	HAULS WITH NUMS.	HAULS WITH L-F	MEAN CPUE Kg/ha	VARIANCE MEAN CPUE KG/HA	MEAN CPUE No/ha	VARIANCE MEAN CPUE NO/HA
1	31	31	31	31	147.94	.801907E+03	652.19	.134792E+05
2.	16	16	16	16	114.70	.829264E+03	560.12	.131832E+05
3	36	35	35	28	62.04	.205712E+03	210.37	.277119E+04
4	36	34	34	17	15.25	.247701E+02	51.02	.283803E+03
5	. 13	0	0	0	0.00	0.	0.00	0.
6	37	1	1	0	0.02	.231421E-03	0.04	.157736E-02
7	23	19	19	17	14.73	.149908E+02	71.24	.293149E+03
8	17	12	12	0	0.10	.126851E-02	0.49	.275251E-01
9	4	0	0	0	0.00	0.	0.00	0.
14	34	7	7	0	0.01	.161300E-04	0.04	.236763E-03
15	10	0	0	0	0.00	0.	0.00	0.
16	19	3	3 -	1	0.48	.112084E+00	1.15	.699229E+00
SA	169	117	117	92	52.42	.407498E+02	218.05	.637621E+03
NS	44	31	31	17	7.68	.403284E+01	37.14	.788636E+02
WS	63	10	10	1	0.13	.774197E-02	0.33	.483423E-01
TOTAL	276	158	158	110	33.52	.153913E+02	140.35	.241370E+03

POPULATION

STRATUM	POPULATION	VARIANCE POPULATION	EFF. DEG. FREEDOM	95% CONFIDENCE LI LOWER	MITS - POPULATION UPPER
1	5,078,690,402	.817367379E+18	30.00	3,232,551,438	6.924.829.365
2	2,298,018,285	.221901515E+18	15.00	1,294,180,396	3.301.856.174
. 3	2,177,661,186	.296948176E+18	35.00	1,070,636,878	3.284.685.495
4	549,014,387	.328620762E+17	35.00	180,746,096	917,282,677
5		0.	0.00	0	0
6	375,564	.141048196E+12	36.00	Ō	1,137,733
7	518,828,663	.155478776E+17	22.00	260,219,263	777,438,064
8	2,722,029	.863767226E+12	16.00	751,720	4.692.337
9		0.	0.00	0	0
14	375,671	.181719606E+11	33.00	101,252	650.091
-15	. 0	0.	0.00	0	0
16	4,634,988	.113892907E+14	18.00	0	11,725,447
SA	10,103,759,823	.136907929E+19	66.70	7,766,336,770	12,441,182,877
NS	521,550,692	.155487413E+17	22.00	262,934,108	780, 167, 276
WS	5,010,659	.114074626E+14	18.06	0	12,106,773
TOTAL	10,630,321,175	.138463944E+19	68.20	8,280,044,998	12,980,597,351

Table B-3. --Continued.

BIOMASS				· · · · · · · · · · · · · · · · · · ·	
STRATUM	BIOMASS MT	VARIANCE BIOMASS	EFF. DEG. FREEDOM	95% CONFIDENCE LOWER	LIMITS - BIOMASS UPPER
1	1.152.022	_486269982E+11	30.00	701,730	1,602,314
2	470 576	.139583427E+11	15.00	218,808	722,343
	642 252	220430910F+11	35.00	340.637	943,867
	164 104	286817740F+10	35.00	55.306	272,901
5	0	0.	0.00	0	0
6	144	206937060E+05	36.00	0	436
7	107 290	795073478E+09	22.00	48,809	165,771
.8	574	398073296E+05	16.00	151	997
ŏ	0	0.	0.00	0	0
14	93	.123800185E+04	33.00	22	165
15		0.	0.00	0	0
16	1,954	.182565699E+07	18.00	0	4,793
SA	2,429,097	.874966300E+11	72.27	1,838,684	3,019,510
NS	107,864	.795113285E+09	22.00	49,382	166,346
WS	2,047	.182689499E+07	18.02	0	4,887
TOTAL	2,539,008	.882935702E+11	73.58	1,946,110	3,131,906
			· ·		
, • •				• •	·
			CONFIDENCE	LIMITS	· .
•		TOTAL BIOMAS	S (T)		PULATION
			UPPER		UPPER
÷ .					···
80 000 00	PCENT	2 154 397 2	923-619	9,106,407,122	12.154.235.227
00.000 00	PCENT	2 043 385 3	034.632	8.666.083.351	12.594.558.998
70.000 Pt	RULNI		,	-,,,,	

Table	в-4.	CPUE,	population,	and	biomass	estimates	for
		rock	sole.				

~	~1	
F	-	
-	r 1	 -

		HAULS	HAULS	HAULS	MEAN	VARIANCE		VARIANCE
STRATUM	TOTAL HAULS	WITH CATCH	WITH- NUMS.	WITH 1-F	CPUE Kg/ha	MEAN CPUE KG/HA	MEAN CPUE	MEAN CPUE
1	31	31	31	31	59.77	.718725E+02	431.75	.509307E+04
2	16	16	16	15	22.52	.242922E+02	164.57	.600761E+03
3	36	35	35	29	27.15	.356972E+02	147.98	.924848E+03
4	36	32	32	16	37.33	.541145E+03	90.18	.154159E+04
5	13	5	5	0	0.47	.830543E-01	0.62	.136784E+00
6	37	32	32	4	6.51	.224263E+01	13.28	.974797E+01
7	23	13	13	5	0.36	.188517E-01	13.75	.312714E+02
8	17	3	3	· 0	0.04	.852645E-03	0.15	.105251E-01
9	4	3	3	0	0.42	.412266E-01	1.15	.242575E+00
14	34	4	3	0	0.04	.590503E-03	0.00	0.
15	10	7	7	0	0.91	.135777E+00	2.48	.105188E+01
16	19	16	16	3	4.20	.107692E+01	14.71	.322232E+02
SA	169	151	151	95	28.14	.332784E+02	143.89	.278242E+03
NS	44	19	19	5	0.24	.548679E-02	7.29	.841557E+01
WS	63	27	26	3	1.27	.783130E-01	4.28	.225357E+01
TOTAL	276	197	196	103	17.52	.124593E+02	90.25	.104526E+03

POPULATION

STRATUM	POPULATION	VARIANCE POPULATION	EFF. DEG. FREEDOM	95% CONFIDENCE LIM LOWER	ITS - POPULATION UPPER
1	3,362,061,975	.308839843E+18	30.00	2,227.253.948	4,496,870,002
2	675, 184, 771	101121406E+17	15.00	460,893,243	889,476,298
3	1,531,869,480	.991023758E+17	35.00	892,342,517	2,171,396,443
4	970,449,138	.178503495E+18	35.00	112,147,012	1,828,751,263
5	2,423,319	.205839804E+13	12.00	0	5,549,556
6	125,613,473	.871667190E+15	36.00	65,697,447	185,529,500
7	100, 136, 361	.165855790E+16	22.00	15,671,890	184,600,833
8	865,296	.330289121E+12	16.00	0	2,083,676
9	1,326,928	.324607998E+12	3.00	0	3, 139, 853
14	767,073	0.	0.00	0	· 0
15	6,372,482	.691905665E+13	9.00	422,495	12,322,469
16	59,356,139	.524862886E+15	18.00	11,222,468	107,489,810
SA	6,667,602,156	.597431580E+18	81.54	5,127,396,395	8.207.807.917
NS	102,328,585	.165921279E+16	22.02	17.847.440	186,809,731
WS	66,495,694	.531781942E+15	18.47	18,045,799	114,945,590
TOTAL	6,836,426,436	.599622574E+18	82.14	5,293,399,017	8,379,453,855

Table B-4.--Continued.

81	OMASS	

STRATUM	BIOMASS MT	VARIANCE BIOMASS	EFF. DEG. FREEDOM	95% CONFIDENCE L LOWER	IMITS - BIOMAS UPPER
	465 448	435829159E+10	30,00	330,640	600.255
2	92 400	408890988F+09	15.00	49.309	135,491
	281 050	382514069F+10	35.00	155,406	406,693
Ĩ.	401.740	.626601746E+11	35.00	0	910,266
5	1.834	.124984467E+07	12.00	· 0 ·	4,270
6	61.592	200537025E+09	36.00	32,854	90,331
	2,656	999848799E+06	22.00	582	4,730
8	232	.267568923E+05	16.00	. 0	579
9	488	.551684863E+05	3.00	0	1,236
14	309	.453220153E+05	33.00	0	742
15	2,333	.893118870E+06	9.00	196	4,471
16	16,934	.175413138E+08	18.00	·· 8,134	25,733
SA	1.304.064	714542847E+11	45.09	765,235	1,842,893
NS	3,377	.108177418E+07	25.17	1,234	5,519
WS	19,576	.184797547E+08	19.87	10,608	28,543
TOTAL	1,327,016	.714738462E+11	45.11	788,114	1,865,919
	. · ·				
			м. А.	•	-
		· · · ·		•	

	•	CONFIDEN	CE LIMITS	
	TOTAL BI	OMASS (T)	TOTAL P	OPULATION
	LOWER	UPPER	LOWER	UPPER
80.000 PERCENT	979,132	1.674.900	5,834,852,449	7,838,000,423
90.000 PERCENT	877,675	1,776,358	5,546,173,649	8,126,679,222
95.000 PERCENT	788,114	1,865,919	5,293,399,017	8,379,453,855

Table	В-5.	CPUE,	populatic	on, and	biomass	estimates	for
		Alaska	a plaice.				

STRATUM	TOTAL HAULS	HAULS WITH CATCH	HAULS WITH NUMS.	HAULS WITH L-F	MEAN CPUE KG/HA	VARIANCE MEAN CPUE KG/HA	MEAN CPUE NO/HA	VARIANCE MEAN CPUE NO/HA
· 1			26	18	15 40	844330F+01	33 36	322086F+02
ż	16	16	16	13	43.87	401799F+03	80.57	867656F+03
3	36	30	30	15	11.92	.713946E+01	16.23	162389E+02
- 4	36	32	32	15	22.20	.362976E+02	26.22	.616109E+02
5	13	. 0	0	. 0	0.00	0.	0.00	0.
6	· 37	11	11	0	1.82	.494807E+00	0.97	.152668E+00
. 7	23	20	20	16	13.62	.108997E+02	24.78	.357590E+02
8	17	11	11	0	0.26	.547614E-02	0.53	.294319E-01
9	4	1	1	0	0.02	.535734E-03	0.08	.616302E-02
14	34	22	22	2	1.73	.302493E+00	2.30	.578047E+00
15	10	· 9	9	0	3.86	.229709E+01	2.25	.596664E+00
16	19	6	6	2	6.66	.283856E+02	11.29	.981651E+02
SA	169	115	115	61	14.66	.572261E+01	22.65	.118507E+02
NS	44	32	32	16	7.17	.293298E+01	13.07	962418E+01
WS	63	37	37	4	3.38	.212178E+01	4.65	.698063E+01
TOTAL	276	184	184	81	10.99	.233001E+01	17.22	.505355E+01

-

POPULATION

,

• •

STRATUM	POPULATION	VARIANCE POPULATION	EFF. DEG. FREEDOM	95% CONFIDENCE LIM LOWER	ITS - POPULATION UPPER
1	259,751,376	.195310283E+16	30.00	169.507.386	349,995,367
2	330,547,521	.146045669E+17	15.00	73.017.543	588 077 499
3	167.981.449	174008819E+16	35.00	83,238,718	252 724 180
4	282,185,161	.713404807E+16	35,00	110.597.979	453 772 343
5	0	0.	0.00	0	0
6	9,143,602	.136515992E+14	36.00	1.645.361	16.641.844
7	180,448,861	.189657042E+16	22.00	90,126,925	270.770.797
8	2,995,922	.923602973E+12	16.00	958.512	5.033.333
9	90,814	.824721331E+10	3.00	0	379,785
14	20,136,618	.443660564E+14	33.00	6.577.258	33.695.978
15	5,761,983	.392474828E+13	9.00	1,280,740	10.243.226
16	45,582,534	.159894865E+16	18.00	0	129,594,918
SA	1,049,609,109	.254454576E+17	40.75	727,394,111	1,371,824,107
NS	183,535,597	.189750227E+16	22.02	93, 191, 475	273,879,720
WS	71,481,135	.164723946E+16	19.10	0	156,428,047
TOTAL	1,304,625,842	.289901993E+17	51.90	962,665,444	1,646,586,239

			a standard and a	
Table B-5.	Continued.			
RIONASS				
B10HX33		1		
·	VADIANCE	EEE DEC	05% CONFIDENCE	I INTE - RIONAS
STRATUM BIOMASS	MT BIOMASS	FREEDOM	LOWER	UPPER
			· · · ·	
1 119,9	938 .511995279E+09	30.00	73,733	. 166 , 143
2 179,9	90 .676316017E+10	15.00	"4,740	355,240
3 123,4	02 .765031293E+09	35.00	67,212	179,591
4 238,9	04 .420297206E+10	35.00	107,201	370,607
5	0 0.	0.00	0	0
6 17.2	.442457836E+08	36.00	3,710	30,708
7 99,2	.578092823E+09	22.00	49,343	149,075
8 1.4	.56 .171847027E+06	16.00	577	2,335
9	27 .716906495E+03	3.00	0	112
14 15,1	50 .232168178E+08	33.00	5,341	24,959
15 9,9	08 .151098531E+08	9.00	1,116	18,701
16 26,8	.462355426E+09	18.00	0	72,052
SA 679.4	43 .122874046E+11	42.18	455,651	903,235
NS 100.6	592 .578265387E+09	22.01	50,818	150,565
WS 51,9	.500682097E+09	21.03	5,392	98,476
TOTAL 832,0	069 .133663521E+11	49.54	599,629	1,064,508
	· · · · · · · · · · · · · · · · · · ·			
	· -		· · ·	11 A.

	· · · · ·	CONFIDEN	ICE LIMITS	
	TOTAL B	IOMASS (T)	TOTAL P	OPULATION
ŧ	LOWER	UPPER	LOWER	UPPER
80.000 PERCENT	681.830	982,308	1,083,485,549	1,525,766,134
90.000 PERCENT	638,128	1,026,009	1,019,227,505	1,590,024,178
95.000 PERCENT	599,629	1,064,508	962,665,444	1,646,586,239

Table	В-б.	CPUE,	popul	lation,	and	biomass	estimates	for
		<u>Hippo</u>	<u>gloss</u>	<u>oides</u> s	spp.			

STRATUM	TOTAL HAULS	HAULS WITH CATCH	HAULS WITH NUMS.	HAULS WITH L-F	MEAN CPUE Kg/ha	VARIANCE MEAN CPUE KG/HA	MEAN CPUE NO/HA	VARIANC MEAN CPI NO/HA
1	31	14	14	· 1	1.54	-335173E+00	5.36	
2	16	7	7	Ó	0.28	995759F-02	0.39	185625E-0
3	36	36	36	21	15.21	.219956E+02	41.29	-909121E+0
4	36	36	36	5	2.52	.190742E+00	9.78	-395319E+0
. 5	13	13	13	11	12.99	.116913E+02	81.30	-536901E+0
6	37	37	37	11	9.00	.255134E+01	37.74	.470820E+0
, 7	23	10	10	0	0.07	.108343E-02	1.07	.173588E+0
8	17	16	16	0	0.73	.923750E-01	10.54	.655746E+0
9	4	3	3	1	2.83	.206124E+01	17.47	.651478E+0
14	34	32	. 32	6	2.73	.346783E+00	39.69	.941226E+0
15	10	9	9	2	2.37	.674968E+00	18.74	.609327E+0
16 /	19	6	6	0	0.10	.657005E-02	0.68	.264556E+0
SA	169	143	143	49	7.19	.130572E+01	26.94	.106394E+0
NS	44	29 -	29	1	0.56	.289846E-01	6.20	.153259E+D
WS	63	47	47	8	1.98	.132062E+00	25.94	.323307E+0
TOTAL	276	219	219	58	4.90	.495150E+00	22.89	.536485E+0

POPULATION

STRATUM	POPULATION	VARIANCE POPULATION	EFF. DEG. FREEDOM	95% CONFIDENCE LII LOWER	MITS - POPULATION UPPER
1	41,706,006	.355191619E+15	30.00	3,221,395	80,190,616
2	1,589,928	.312447944E+12	15.00	398,762	2.781.094
. 3	427,386,603	.974170891E+16	35.00	226.877.358	627,895,848
4	105,211,385	.457747196E+15	35.00	61 747 387	148 675 383
5	315,395,416	.807957481E+16	12.00	119.532.831	511,258,002
6	356,875,926	.421008944E+16	36.00	225, 197, 897	488 553 954
7	7,798,964	.920666177E+13	22.00	1.505.934	14 091 995
8	59.044.292	.205779903E+15	16.00	28,632,827	89 455 756
9	20,211,382	.871792601E+14	3.00	0	49,921,663
14	347,702,926	.722405663E+16	33.00	174 679 723	520 726 129
15	48,050,335	.400804707E+15	9.00	2.764.852	93 335 819
16	2,735,704	.430918081E+13	18.00	0	7,097,079
SA	1,248,165,263	.228446244E+17	60.30	945.876.498	1.550.454.029
NS	87,054,638	.302165825E+15	17.61	50,533,128	123.576.148
WS	398,488,966	.762917051E+16	36.39	221,230,773	575,747,158
TOTAL	1,733,708,867	.307759608E+17	92.33	1 1,384,718,556	2,082,699,178

STRATUM	BIOMASS MT	VARIANCE BIOMASS	EFF. DEG. FREEDOM	95% CONFIDENCE	LIMITS - BIOMASS UPPER
1	11,998	.203246370E+08	30.00	2,792	21,204
2	1.136	167608236E+06	15.00 -	263	2.008
3	157.412	235693998E+10	35.00	58,786	256.038
	27.070	220864155E+08	35.00	17.523	36.617
6 5	50 380	175937368F+09	12.00	21.477	79,283
6	85,126	228142014E+09	36.00	54.473	115.779
7	515	.574626189E+05	22.00	18	1.012
8	4 114	289882344F+07	16.00	505	7.724
. o	3,269	275830838F+07	3.00	0	8.553
14	23 925	.266161658F+08	33.00	13.423	34,428
15	6 069	443981932F+07	9.00	1.303	10.835
16	386	.107015270E+06	18.00	0	1,074
SA	333.121	280359802E+10	48.29	226,555	439,686
NS	7.898	.571459444E+07	10.67	2.636	13,160
WS	30,381	311630004E+08	41.05	19,104	41,657
TOTAL	371,399	284047562E+10	49.56	264,247	478,551

Table B-6.--Continued.

,

 CONFIDENCE LIMITS

 TOTAL BIOMASS (T)
 TOTAL POPULATION

 LOWER
 UPPER
 LOWER
 UPPER

 80.000 PERCENT
 302,141
 440,658
 1,507,005,510
 1,960,412,224

 90.000 PERCENT
 281,995
 460,803
 1,441,780,343
 2,025,637,391

 95.000 PERCENT
 264,247
 478,551
 1,384,718,556
 2,082,699,178

Table B-7	-CPUE, <u>Ather</u> e	populat esthes s	tion, spp.	and	biomass	estimates	for
CPUE							

	T	т	т	Π.	
し	۲	ι	J	E.	

STRATUM	TOTAL HAULS	HAULS WITH CATCH	HAULS WITH NUMS.	HAULS WITH L-F		MEAN CPUE Kg/ha	VARIANCE MEAN CPUE KG/HA	MEAN CPUE NO/HA	VARIANCE MEAN CPUE NO/HA
1	31	2	2	. 0	~	0.02	.300722E-03	0.37	.122464E+00
2	16	0	. 0	0		0.00	0.	0.00	0.
3	36	22	22	6		3.37	.210783E+01	10.52	.167193E+02
4	36	6	6	1		0.22	.292838E-01	0.88	.293904E+00
5	13	13	13	12		31.85	.411114E+02	76.12	.276498E+03
· 6	- 37	30	30	10		10.04	.602874E+01	21.80	349952E+02
7	23	0	0	0		0.00	0.	0.00	0.
8	. 17	0	0	· 0		0.00	0.	0.00	0.
9	<u> </u>	0	0	0		0.00	0.	0.00	0.
14	34	0	0	0		0.00	0.	0.00	0.
15	10	1	1	. 0		0.77	.596453E+00	0.61	.377886E+00
16	19	3	3	0		0.10	.408667E-02	0.21	.237272E-01
SA	169	73	73	29		5.52	.645982E+00	13.44	.424894E+01
NS	44	0	0	0		0.00	0.	0.00	0.
WS	63	4	4	0		0.15	.169084E-01	0.16	.121715E-01
TOTAL	276	77	77	29	• .	3.41	.242482E+00	8.25	.159085E+01
						, *			
									•
POPULATIO	N								

STRATUM	POPULATION	VARIANCE	EFF. DEG. FREEDOM	95% CONFIDENCE LOWER	LIMITS - POPULATION UPPER
		·			<u>_</u>
1	2,881,564	.742615154E+13	30.00	. 0	8,446,211
2	0	0.	0.00	0	0
3	108,937,669	.179155747E+16	35.00	22,950,788	194,924,551
4	9,419,137	.340317168E+14	35.00		21,270,239
5	295,268,820	.416088562E+16	12.00	154,712,584	435.825.056
6	206,138,305	.312928419E+16	36.00	92,613,658	319,662,952
7		0.	0.00		. , ,
8	0	0.	0.00	, O	0
9	0	0.	0.00	0	0
14	0	0.	0.00	<i>V</i> 0	0
15	1,576,600	.248566783E+13	9.00	. 0	5.142.869
16	835,128	.386476404E+12	18.00	0	2,141,261
SA	622,645,495	.912318515E+16	46.07	430,210,687	815,080,303
NS	· · · O`	0.	0.00	0	0
WS	2,411,728	.287214423E+13	11.87	. 0	6,104,567
TOTAL	625.057.223	.912605729E+16	46.10	432,592,126	817.522.320

Table	В-7.	Continued.

BIOMASS			· · · · · ·		· · · ·
STRATUM	BIOMASS MT	VARIANCE BIOMASS	EFF. DEG. FREEDOM	95% CONFIDENCE LOWER	E LIMITS - BIOMASS UPPER
	142	1823555316+05	30.00	. 0	418
2	0	0.	0.00	. Õ	Ō
· 2	34 843	225865540E+09	35.00	4.312	65.374
4	2 406	-339082948E+07	35.00	· 0	6,146
5	123 565	.618665803E+09	12.00	69.367	177,763
6	94,899	.539092316E+09	36.00	47,780	142,019
.7	0	0.	0.00	. 0	0
8	. 0	0.	0.00	0	0 '
91	Û.	0.	0.00	- O	- O 1
14	· 0	0.	0.00	· · · O	0
15	1,981	.392336106E+07	9.00	0	6,461
16	386	.665650905E+05	18.00	0	929
SA	255,855	.138703272E+10	46.44	180,822	330,888
NS	0	0.	0.00	0	0
WS	2,367	.398992615E+07	9.31	0	6,886
TOTAL	258,222	.139102265E+10	46.71	183,120	333,324
				а.	
	·	· · ·	· :		
			CONFIDENCE	LIMITS	·
		· · · · · · · · · · · · · · · · · · ·			
	. ,	TOTAL BIOMAS	<u>SS (T)</u>	TOTAL PO	DPULATION
1.0		LOWER	UPPER	LOWER	UPPER
80,000,1		200 716	306 728	500 781 726	749 332 720
	DEDCENT	105 585	320 860	444 556 598	785 557 848
90.000 1	DEDCENT	183,303	320,000	432 502 124	817 522 320
72.000 I	PERLENI	103,120	, <u>ب</u> عد, ددد	432,372,120	011, 522, 520

Table B-8. --CPUE, population, and biomass estimates for Pacific halibut.

STRATUM	TOTAL HAULS	HAULS WITH CATCH	HAULS WITH NUMS.	HAULS WITH L-F	MEAN CPUE KG/HA	VARIANCE MEAN CPUE KG/HA	MEAN CPUE	VARIANCE MEAN CPUE NO/HA
1	31	27	27	25	.07	.152668E+00	4.75	- 139706E+01
2	16	14	14	14	.48	.246141E+00	4.25	.258139E+01
3	36	33	33	- 30	.36	.617949E+00	1.88	.265751E+00
4	36	21	21	21	.89	.118952E+00	0.54	.177754E-01
5	13	11	11	11	.24	.229829E+00	0.79	.548346E-01
6	37	19	19	18	.59	.815250E+00	0.39	.216334E-01
7	23	4	4	4	.03	.577027E-03	0.11	.744755E-02
8	17	0	0	0	.00	0.	0.00	0.
·9	4	1	1	1	.04	.184040E-02	0.04	.184816E-02
14	34	3	3	2	. 14	.911047E-02	0.02	.886402E-04
15	10	4	4	4	.62	.293651E+00	0.17	.778980E-02
16	19	13	13	11	.50	.385188E+00	0.32	.102278E-01
SA	169	125	125	119	. 15	.790573E-01	1.87	.751975E-01
NS	44	5	5	5	Ű.02	.167716E-03	0.06	.201599E-02
WS	63	20	20	17	.58	.377370E-01	0.12	.951964E-03
TOTAL	276	150	150	141	-44	.311487E-01	1.18	.282543E-01

.

POPULATION

_

STRATUM	POPULATION	VARIANCE POPULATION	EFF. DEG. FREEDOM	95% CONFIDENCE LIM LOWER	ITS - POPULATIO UPPER
1	36,974,614	.847165428E+14	30.00	18,179,721	55.769.507
2	17,442,420	.434505677E+14	15.00	3,395,498	31,489,342
3	19,495,396	.284766629E+14	35.00	8.654.595	30,336,197
. 4	5,818,456	.205824252E+13	35.00	2,903,949	8.732.963
5	3,061,369	.825180434E+12	12.00	1.081.978	5.040.761
6	3,732,210	.193446592E+13	36.00	909,618	6,554,803
7	832,603	.394999256E+12	22.00	0	2,136,091
8	0	0.	0.00	<u>`</u> 0	0
9	49,731	.247316044E+10	3.00	0	207.975
14	146,862	.680327773E+10	33.00	0	314,770
15	432,488	.512399214E+11	9.00	0	944 519
16	1,310,770	.166594481E+12	18.00	453,226	2,168,314
SA	86,524,466	.161461662E+15	67.10	61,140,602	111,908,330
NS	882,334	.397472417E+12	22.27	, O	2,189,896
WS	1,890,119	.224637680E+12	27.50	917,554	2,862,684
TOTAL	89,296,920	.162083772E+15	67.61	63,868,444	114,725,395

CPUE

Table	в-8.	Continued.
-------	------	------------

D 1	OMACC	
ъ.		

BIOMASS			·		
STRATUM	BIOMASS MT	VARIANCE BIOMASS	EFF. DEG. FREEDOM	95% CONFIDENCE L LOWER	IMITS - BIOMASS UPPER
1	16 1/0	02576751/5+07	30.00	0 036	22 342
2	6 090	.414308865F+07	15.00	1.752	10.428
3	34,828	.662164858E+08	35.00	18,297	51,359
4	9,548	.137736501E+08	35.00	2,009	17,088
5	8,681	.345858173E+07	12.00	4,629	12,734
. 6	24,457	.728999332E+08	36.00	7,130	41,785
. 7	249	.306040575E+05	22.00	0	611
8 .	0	0.	0.00	0	· · O
. 9	. 50	.246278346E+04	3.00	. 0 z	208
14	1,215	.699242837E+06	33.00	0	2,918
15	1,594	.193158588E+07	9.00	0 .	4,738
16	6,038	.627407333E+07	.18.00	775	11,300
SA	99,754	.169749415E+09	101.71	73,879	125,630
NS	298	330668410E+05	24.52	0	673
. WS	8,847	.890490205E+07	30.31	2,753	14,940
TOTAL	108 ,8 99	.178687384E+09	111.67	82,396	135,402
••		, ,		×	

1.		CONFIDENCE LIMITS					
	TOTAL BI	TOTAL BIOMASS (T)		POPULATION			
	LOWER	UPPER	LOWER	UPPER			
80.000 PERCENT	91,656	126,142	72,809,151	105,784,689			
90.000 PERCENT	86,713	131,085	68,045,131	110,548,708			
95.000 PERCENT	82,396	135,402	63,868,444	114,725,395			

THIS PAGE INTENTIONALLY LEFT BLANK

151

APPENDIX C

Population Estimates by Sex and Size Groups for Principal Fish Species

Appendix C presents population estimates for principal fish species by sex-centimeter interval. Estimates are given for the standard U.S. shelf area, north shelf area and, western shelf area.

Table	Page
C-1. Walleye pollock	152
C-2. Pacific cod	157
C-3. Yellowfin sole	162
C-4. Rock sole	164
C-5. Hippoglossoides spp	166
C-6. Alaska plaice	169
C-7.Atheresthes spp	172
C-8. Pacific halibut	173

Table C-l. --Population estimates by sex and size groups for Walleye pollock from the 1990 cooperative U.S.-Russian bottom trawl survey of the Bering Sea shelf.

Length (mm)	Males	Females	Unsexed	Total	Proportion	Cumulative proportion
60.0	0	0	293,365	293.365	0.00003	0.00003
70.0	0	. 0	42,066,392	42,066,392	0.00437	0.00440
80.0	0	0	195,497,542	195.497.542	0.02031	0.02471
90.0	0	0	587.946.561	587,946,561	0.06109	0.08580
100.0	Ō	Ō	720.951.230	720.951.230	0.07491	0 16071
110.0	0	Ō	714,175,596	714,175,596	0.07420	0 23491
120.0	Ō	õ	666 348 474	666 348 474	0 06023	0.20491
130.0	ŏ	õ	770 289 120	770 289 120	0 08003	0.30414
140.0	608.508	141 776	860 985 065	861 735 349	0.000000	0 47371
150.0	1.416 383	674 482	563 296 874	545 387 738	0.0597/	0.47371
160.0	1.452.878	1 401 106	217 356 980	220 210 965	0.02288	0.55245
170.0	579,779	1 141 026	72 058 322	73 770 126	0.02200	0.55300
180.0	3 169 371	4 469 660	31 011 573	79,779,120	0.00/07	0.56500
190.0	6 862 984	6 944 608	6 057 876	10 865 /60	0.00402	0.50701
200 0	12 832 487	10 195 502	007 111	2/ 020 100	0.00200	0.50908
210.0	16 523 925	15 383 21/	772,111	24,020,100	0.00230	0.57157
220 0	18 160 204	16 715 664	42 172	7/ 079 0/1	0.00352	0.07409
230 0	21 078 223	16,715,004	02,172	75 0/0 571	0.00303	0.5/652
240 0	18 386 736	13 713 599	. 0	33,042,371	0.00572	0.58224
250 0	16 453 808	15,713,388	0	32,100,322	0.00334	0.58558
260.0	18 472 000	12,000,407	0	31,439,210	0.00327	0.58885
270.0	12,090,040	7 540 441	U	51,505,819	0.00327	0.59212
280.0	0 2/5 7/7	7,560,461	U	19,649,530	0.00204	0.59416
200.0	7,243,30/	5 225 377	U	18,159,969	0.00189	0.59605
290.0	0,141,704	5,225,377	· U	11,367,161	0.00118	0.59723
300.0	4,047,010	4,491,223	D .	9,336,839	0.00097	0.59820
770.0	3,704,200	5,696,134	· U	9,460,343	0.00098	0.59918
320.0	5,271,235	4,150,325	U	9,421,561	0.00098	0.60016
330.0	0,040,224	3,708,019	0	10,554,243	0.00110	0.60126
340.0	0,701,120	6,903,786	0	13,604,905	0.00141	0.60267
350.0	9,348,469	14,106,345	0	23,454,814	0.00244	0.60511
300.0		16,905,956	U	29,733,011	0.00309	0.60820
370.0	10,950,272	22,024,649	. 0	40,980,920	0.00426	0.61246
380.0	31,504,872	21,728,325	0	53,233,197	0.00553	0.61799
390.0	30, 318, 274	29,869,982	0	. 66,188,256	0.00688	0.62486
400.0	70,258,731	49,834,500	0	120,093,231	0.01248	0.63734
410.0	75,029,841	67,086,647	0	142,116,488	0.01477	0.65211
420.0	105,165,823	95,169,263	0	200,335,086	0.02081	0.67292
430.0	127,482,959	124,655,746	0	252,138,706	0.02620	0.69912
440.0	140,187,927	123,391,148	0	263,579,075	0.02739	0.72650
450.0	135,930,161	152,790,972	0	288,721,133	0.03000	0.75650
460.0	131,267,993	146,482,380	0	277,750,373	0.02886	0.78536
470.0	128,920,048	125,309,875	0	254,229,922	0.02641	0.81178
480.0	134,399,635	122,898,115	. 0.	257,297,751	0.02673	0.83851
490.0	97,799,315	115,709,609	0	213,508,925	0.02218	0.86069
500.0	87,414,495	96, 172, 671	· 0	183, 587, 166	0.01907	0.87977
510.0	79,050,430	82,798,418	0 ·	161,848,848	0.01682	0.89658
520.0	71,235,938	59,560,319	0	130,796,257	0.01359	0,91017
530.0	77,093,781	56,336,991	0	133,430,772	0.01386	0.92404
540.0	55,273,880	48,030,908	0	103,304,788	0.01073	0.93477
550.0	43,733,792	46,180,746	60.613	89,975,151	0,00935	0.94412
560.0	35,374.772	35,129,785	121.227	70,625,784	0.00734	0 95164
570.0	26,734.038	31,813,857	0	58,547,894	0,00608	0.95754
580.0	24,690.239	30,321,393	- 0	55,011,632	0,00572	0 06325
590.0	18,833,129	25,039,492	ň	43 872 622	0 00454	0.70323
600.0	25,220,650	23,461,379	õ	48,682,020	0 00504	0.70701
610.0	13,683,418	22,967,922	Ő	36 646 340	0 00381	0.7/20/
		,,	-		0.00001	0.77000

Standard U.S. Shelf Area

Table C-l. --Continued.

				-			
1	·	· 1	Stand	lard	U.S.	Shelf	Area
			· ·				· ·
	_						

ength			5			Cumulativ
(mm)	Males	Females	Unsexed	Total	Proportion	proportio
620.0	9 727 360	20 560 442	0	30 287 802	0_00315	0.979/
630.0	12,627,085	16.628.241	Ŏ.	29,255,326	0.00304	0.9828
640.0	10 456 022	19 981 204	Ň	30 437 226	0.00316	0.9860
650.0	6 562 834	13 511 128	n n	20 073 962	0.00209	0.988
660 0	6 784 419	9 798 717	ŏ	16 583 136	0.00172	0 080
670 0	5 671 159	14-398 340	ň	20 069 499	0.00102	0 0010
680.0	4 028 261	14 637 442	ñ -	18 665 703	0 00194	0 993
690.0	3 857 262	10 443 162	· õ	14 300 423	0.00149	0.995
700.0	1 686 072	8 273 691	n n	9 959 763	0 00103	0 996
710 0	1 725 397	5 892 651	n n	7 618 048	0 00079	0 997
720 0	647 015	5 708 015	Ő	6 355 030	0.00066	0 007
730 0	61 874	4 942 574	, , , , , , , , , , , , , , , , , , ,	5 004 448	0.00052	0 008
740 0	65 52/	2 045 207	·	2 130 821	0.00022	0.008
750.0	214 731	3 424 820	, õ	3 430 551	0.00022	0.990
760.0	-0	1 117 435	ŏ	1 117 435	0.00030	0.990
770 0	: 0	3 280 785	, , , , , , , , , , , , , , , , , , ,	3 280 785	-0.00034	0.000/
780.0	n j	1 85/ 866	0	1 85/ 866	0.00010	0.0004
700.0		1 579 514	0	1 579 51/	0.00016	0.9990
800.0	. 0	31/ 802	,	31/ 802	0.00010	0.7771
810 0	0	1 110 822		1 110 922	0.00003	0.9990
830 0	0	554 182		55/ 182	0.00012	0.999
840 0	0	267 107	0	267 107	0.00000	1,000
0.0.0		201,101	<u>_</u>	201,101	0.00000	1.0000
TOTAL	2,068,913,852	2,106,199,768	5,449,571,093	9,624,684,713		
۰,۰		N	orth Shelf Are	ea	, i i i i i i i i i i i i i i i i i i i	· · · ·
, • ,		N	orth Shelf Are	ea		
60.0	0	N	orth Shelf Are 6,562,961	ea 6,562,961	0.00534	0.0053
60.0 70.0	0 0	N 0 0	orth Shelf Are 6,562,961 100,457,225	ea 6,562,961 100,457,225	0.00534 0.08173	0.0053 0.0870
60.0 70.0 80.0	0 0 0	N 0 0 0 0	orth Shelf Are 6,562,961 100,457,225 228,621,678	ea 6,562,961 100,457,225 228,621,678	0.00534 0.08173 0.18600	0.0053 0.0870 0.2730
60.0 70.0 80.0 90.0	0 0 0 0	N 0 0 0 0	orth Shelf Are 6,562,961 100,457,225 228,621,678 264,824,964	6,562,961 100,457,225 228,621,678 264,824,964	0.00534 0.08173 0.18600 0.21546	0.0053 0.0870 0.2730 0.4885
60.0 70.0 80.0 90.0 100.0	0 0 0 0 0 0	N 0 0 0 0 0 0	orth Shelf Are 6,562,961 100,457,225 228,621,678 264,824,964 118,376,447	6,562,961 100,457,225 228,621,678 264,824,964 118,376,447	0.00534 0.08173 0.18600 0.21546 0.09631	0.0053 0.0870 0.2730 0.4885 0.5848
60.0 70.0 80.0 90.0 100.0 110.0	0 0 0 0 0 0	N 0 0 0 0 0 0 0 0 0 0 0	orth Shelf Are 6,562,961 100,457,225 228,621,678 264,824,964 118,376,447 37,073,069	6,562,961 100,457,225 228,621,678 264,824,964 118,376,447 37,073,069	0.00534 0.08173 0.18600 0.21546 0.09631 0.03016	0.0053 0.0870 0.2730 0.4885 0.5848 0.6150
60.0 70.0 80.0 90.0 100.0 110.0 120.0	0 0 0 0 0 0 0	N 0 0 0 0 0 0 0 0 0 0 0 0	orth Shelf Are 6,562,961 100,457,225 228,621,678 264,824,964 118,376,447 37,073,069 11,754,593	6,562,961 100,457,225 228,621,678 264,824,964 118,376,447 37,073,069 11,754,593	0.00534 0.08173 0.18600 0.21546 0.09631 0.03016 0.00956	0.0053 0.0870 0.2730 0.4885 0.5848 0.6150 0.6245
60.0 70.0 90.0 100.0 110.0 120.0 130.0	0 0 0 0 0 0 0 0 0 0	N 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	orth Shelf Are 6,562,961 100,457,225 228,621,678 264,824,964 118,376,447 37,073,069 11,754,593 9,722,382	6,562,961 100,457,225 228,621,678 264,824,964 118,376,447 37,073,069 11,754,593 9,722,382	0.00534 0.08173 0.18600 0.21546 0.09631 0.03016 0.00956 0.00791	0.0053 0.0870 0.2730 0.4885 0.5848 0.6150 0.6245 0.6245
60.0 70.0 80.0 90.0 100.0 110.0 120.0 130.0 140.0	0 0 0 0 0 0 0 0 0 0 0	N 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	orth Shelf Are 6,562,961 100,457,225 228,621,678 264,824,964 118,376,447 37,073,069 11,754,593 9,722,382 3,796,790	6,562,961 100,457,225 228,621,678 264,824,964 118,376,447 37,073,069 11,754,593 9,722,382 3,796,790	0.00534 0.08173 0.18600 0.21546 0.09631 0.03016 0.00956 0.00791 0.00309	0.0053 0.0870 0.2730 0.4885 0.5848 0.6150 0.6245 0.6324 0 <u>.</u> 6355
60.0 70.0 80.0 90.0 100.0 110.0 120.0 130.0 140.0 150.0	0 0 0 0 0 0 0 0 0 0 0 0 0 0	N 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	orth Shelf Are 6,562,961 100,457,225 228,621,678 264,824,964 118,376,447 37,073,069 11,754,593 9,722,382 3,796,790 413,171	6,562,961 100,457,225 228,621,678 264,824,964 118,376,447 37,073,069 11,754,593 9,722,382 3,796,790 413,171	0.00534 0.08173 0.18600 0.21546 0.09631 0.03016 0.00956 0.00791 0.00309 0.00034	0.0053 0.0870 0.2730 0.4885 0.5848 0.6150 0.6245 0.6324 0.6355 0.6359
60.0 70.0 90.0 100.0 110.0 120.0 130.0 140.0 150.0 160.0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	N 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	orth Shelf Are 6,562,961 100,457,225 228,621,678 264,824,964 118,376,447 37,073,069 11,754,593 9,722,382 3,796,790 413,171 680,932	6,562,961 100,457,225 228,621,678 264,824,964 118,376,447 37,073,069 11,754,593 9,722,382 3,796,790 413,171 680,932	0.00534 0.08173 0.18600 0.21546 0.09631 0.03016 0.00956 0.00791 0.00309 0.00034 0.00055	0.0053 0.0870 0.2730 0.4885 0.5845 0.6150 0.6245 0.6324 0.6355 0.6359 0.6359
60.0 70.0 90.0 100.0 120.0 130.0 140.0 150.0 150.0 170.0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	N 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	orth Shelf Are 6,562,961 100,457,225 228,621,678 264,824,964 118,376,447 37,073,069 11,754,593 9,722,382 3,796,790 413,171 680,932 136,186	6,562,961 100,457,225 228,621,678 264,824,964 118,376,447 37,073,069 11,754,593 9,722,382 3,796,790 413,171 680,932 136,186	0.00534 0.08173 0.18600 0.21546 0.09631 0.03016 0.00956 0.00791 0.00309 0.00034 0.00055 0.00011	0.0053 0.0870 0.2730 0.4885 0.5848 0.6150 0.6324 0.6355 0.6359 0.6364 0.6364
60.0 70.0 80.0 90.0 110.0 120.0 130.0 140.0 150.0 160.0 170.0 180.0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	N 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	orth Shelf Are 6,562,961 100,457,225 228,621,678 264,824,964 118,376,447 37,073,069 11,754,593 9,722,382 3,796,790 413,171 680,932 136,186 181,582	6,562,961 100,457,225 228,621,678 264,824,964 118,376,447 37,073,069 11,754,593 9,722,382 3,796,790 413,171 680,932 136,186 181,582	0.00534 0.08173 0.18600 0.21546 0.09631 0.03016 0.00956 0.00791 0.00309 0.00034 0.00055 0.00011 0.00015	0.0053 0.0870 0.2730 0.4885 0.5848 0.6150 0.6245 0.6324 0.6359 0.6364 0.6365 0.6365
60.0 70.0 80.0 90.0 100.0 120.0 130.0 140.0 150.0 160.0 170.0 180.0 190.0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	N 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	orth Shelf Are 6,562,961 100,457,225 228,621,678 264,824,964 118,376,447 37,073,069 11,754,593 9,722,382 3,796,790 413,171 680,932 136,186 181,582 0	6,562,961 100,457,225 228,621,678 264,824,964 118,376,447 37,073,069 11,754,593 9,722,382 3,796,790 413,171 680,932 136,186 181,582 727,096	0.00534 0.08173 0.18600 0.21546 0.09631 0.00956 0.00791 0.00309 0.00034 0.00055 0.00011 0.00015 0.00059	0.0053 0.0870 0.2730 0.4885 0.5848 0.6150 0.6245 0.6324 0.6355 0.6355 0.6355 0.6355 0.6367 0.6367
60.0 70.0 80.0 90.0 110.0 120.0 130.0 140.0 150.0 160.0 170.0 180.0 190.0 200.0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	N 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	6,562,961 100,457,225 228,621,678 264,824,964 118,376,447 37,073,069 11,754,593 9,722,382 3,796,790 413,171 680,932 136,186 181,582 0	6,562,961 100,457,225 228,621,678 264,824,964 118,376,447 37,073,069 11,754,593 9,722,382 3,796,790 413,171 680,932 136,186 181,582 727,096 1,134,887	0.00534 0.08173 0.18600 0.21546 0.09631 0.03016 0.00956 0.00791 0.00309 0.00034 0.00055 0.00011 0.00015 0.00059 0.00059	0.0053 0.0870 0.2730 0.4885 0.584& 0.6324 0.6324 0.6355 0.6355 0.6355 0.6355 0.6355 0.6357 0.6367 0.6373 0.6373
60.0 70.0 80.0 90.0 100.0 120.0 130.0 140.0 150.0 160.0 180.0 180.0 200.0 210.0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 363,932 453,955 0	N 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	6,562,961 100,457,225 228,621,678 264,824,964 118,376,447 37,073,069 11,754,593 9,722,382 3,796,790 413,171 680,932 136,186 181,582 0 0	6,562,961 100,457,225 228,621,678 264,824,964 118,376,447 37,073,069 11,754,593 9,722,382 3,796,790 413,171 680,932 136,186 181,582 727,096 1,134,887 590,141	0.00534 0.08173 0.18600 0.21546 0.09631 0.00956 0.00791 0.00309 0.00034 0.00055 0.00011 0.00015 0.00059 0.00059 0.00092 0.00048	0.0053 0.0870 0.2730 0.4885 0.5848 0.6150 0.6245 0.6324 0.6355 0.6355 0.6355 0.6355 0.6355 0.6355 0.6367 0.6373 0.6382 0.6382
60.0 70.0 80.0 90.0 110.0 120.0 130.0 140.0 150.0 160.0 170.0 180.0 200.0 210.0 240.0	0 0 0 0 0 0 0 0 0 0 363,932 453,955 0 184,656	N 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	orth Shelf Are 6,562,961 100,457,225 228,621,678 264,824,964 118,376,447 37,073,069 11,754,593 9,722,382 3,796,790 413,171 680,932 136,186 181,582 0 0 0	6,562,961 100,457,225 228,621,678 264,824,964 118,376,447 37,073,069 11,754,593 9,722,382 3,796,790 413,171 680,932 136,186 181,582 727,096 1,134,887 590,141 184,656	0.00534 0.08173 0.18600 0.21546 0.09631 0.03016 0.00956 0.00791 0.00309 0.00034 0.00055 0.00011 0.00059 0.00059 0.00059 0.00059 0.00092	0.0053 0.0870 0.2730 0.4885 0.5848 0.6150 0.6245 0.6324 0.6355 0.6359 0.6364 0.6365 0.6367 0.6373 0.6382 0.6387
60.0 70.0 90.0 100.0 110.0 120.0 130.0 150.0 160.0 170.0 180.0 190.0 2210.0 2210.0 2210.0 220.0	0 0 0 0 0 0 0 0 0 363,932 453,955 0 184,656 2,180,614	N 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	6,562,961 100,457,225 228,621,678 264,824,964 118,376,447 37,073,069 11,754,593 9,722,382 3,796,790 413,171 680,932 136,186 181,582 0 0 0	6,562,961 100,457,225 228,621,678 264,824,964 118,376,447 37,073,069 11,754,593 9,722,382 3,796,790 413,171 680,932 136,186 181,582 727,096 1,134,887 590,141 184,656 2,180,614	0.00534 0.08173 0.18600 0.21546 0.09631 0.03016 0.00956 0.00791 0.00034 0.00055 0.00011 0.00055 0.00059 0.00059 0.00059 0.00059 0.00048 0.00015 0.00015	0.0053 0.0870 0.2730 0.4885 0.5846 0.6355 0.6324 0.6355 0.6355 0.6359 0.6364 0.6365 0.6367 0.6382 0.6382 0.6382
60.0 70.0 90.0 100.0 110.0 120.0 130.0 140.0 150.0 150.0 180.0 190.0 200.0 210.0 250.0 250.0 290.0	0 0 0 0 0 0 0 0 0 0 363,932 453,955 0 184,656 2,180,614 46,164	N 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	orth Shelf Are 6,562,961 100,457,225 228,621,678 264,824,964 118,376,447 37,073,069 11,754,593 9,722,382 3,796,790 413,171 680,932 136,186 181,582 0 0 0 0 0 0 0 0 0 0 0 0 0	6,562,961 100,457,225 228,621,678 264,824,964 118,376,447 37,073,069 11,754,593 9,722,382 3,796,790 413,171 680,932 136,186 181,582 727,096 1,134,887 590,141 184,656 2,180,614 46,164	0.00534 0.08173 0.18600 0.21546 0.09631 0.00956 0.00791 0.00309 0.00034 0.00055 0.00011 0.00015 0.00059 0.00059 0.00059 0.00092 0.00048 0.00015 0.00177 0.00004	0.0053 0.0870 0.2730 0.4885 0.5846 0.6150 0.6245 0.6324 0.6355 0.6355 0.6367 0.6367 0.6373 0.6382 0.6382 0.6466 0.6466
60.0 70.0 80.0 90.0 110.0 120.0 130.0 140.0 150.0 150.0 150.0 180.0 200.0 210.0 240.0 250.0 290.0 330.0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	N 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	orth Shelf Are 6,562,961 100,457,225 228,621,678 264,824,964 118,376,447 37,073,069 11,754,593 9,722,382 3,796,790 413,171 680,932 136,186 181,582 0 0 0 0 0 0 0 0 0 0 0 0 0	6,562,961 100,457,225 228,621,678 264,824,964 118,376,447 37,073,069 11,754,593 9,722,382 3,796,790 413,171 680,932 136,186 181,582 727,096 1,134,887 590,141 184,656 2,180,614 46,164 2,134,450	0.00534 0.08173 0.18600 0.21546 0.09631 0.00956 0.00791 0.00309 0.00034 0.00015 0.00015 0.00059 0.00059 0.00059 0.00059 0.00059 0.00059 0.00059 0.00059 0.00059 0.00015 0.00015	0.0053 0.0870 0.2730 0.4885 0.5848 0.6150 0.6245 0.6324 0.6355 0.6355 0.6355 0.6367 0.6367 0.6373 0.6388 0.6406 0.6406 0.6424
60.0 70.0 80.0 90.0 110.0 120.0 130.0 140.0 150.0 150.0 170.0 200.0 210.0 240.0 250.0 330.0 340.0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	N 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	orth Shelf Are 6,562,961 100,457,225 228,621,678 264,824,964 118,376,447 37,073,069 11,754,593 9,722,382 3,796,790 413,171 680,932 136,186 181,582 0 0 0 0 0 0 0 0 0 0 0 0 0 0	6,562,961 100,457,225 228,621,678 264,824,964 118,376,447 37,073,069 11,754,593 9,722,382 3,796,790 413,171 680,932 136,186 181,582 727,096 1,134,887 590,141 184,656 2,180,614 46,164 2,134,450 2,226,778	0.00534 0.08173 0.18600 0.21546 0.09631 0.03016 0.00956 0.00791 0.00355 0.00011 0.00015 0.00059 0.00059 0.00059 0.00059 0.00059 0.00059 0.00059 0.00059 0.00048 0.00015 0.000177 0.00004 0.00174 0.00181	0.0053 0.0870 0.2730 0.4885 0.5848 0.6150 0.6245 0.6355 0.6355 0.6355 0.6355 0.6367 0.6367 0.6363 0.6382 0.6387 0.6388 0.6406 0.6424
60.0 70.0 80.0 90.0 110.0 120.0 130.0 140.0 150.0 150.0 150.0 150.0 150.0 190.0 200.0 210.0 240.0 250.0 330.0 330.0 350.0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	N 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	6,562,961 100,457,225 228,621,678 264,824,964 118,376,447 37,073,069 11,754,593 9,722,382 3,796,790 413,171 680,932 136,186 181,582 0	6,562,961 100,457,225 228,621,678 264,824,964 118,376,447 37,073,069 11,754,593 9,722,382 3,796,790 413,171 680,932 136,186 181,582 727,096 1,134,887 590,141 184,656 2,180,614 46,164 2,134,450 2,226,778 2,134,450	0.00534 0.08173 0.18600 0.21546 0.09631 0.03016 0.00956 0.00791 0.00309 0.00034 0.00055 0.00011 0.00015 0.00059 0.00059 0.00059 0.00059 0.00092 0.00048 0.00015 0.00174 0.00174	0.0053 0.0870 0.2730 0.5848 0.6150 0.6245 0.6324 0.6355 0.6359 0.6367 0.6367 0.6367 0.6367 0.6373 0.6382 0.6387 0.6388 0.6406 0.6424 0.6422 0.6459
60.0 70.0 80.0 90.0 110.0 120.0 130.0 140.0 150.0 160.0 180.0 190.0 200.0 210.0 240.0 250.0 290.0 330.0 340.0 350.0 370.0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	N 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	orth Shelf Are 6,562,961 100,457,225 228,621,678 264,824,964 118,376,447 37,073,069 11,754,593 9,722,382 3,796,790 413,171 680,932 136,186 181,582 0 <td>6,562,961 100,457,225 228,621,678 264,824,964 118,376,447 37,073,069 11,754,593 9,722,382 3,796,790 413,171 680,932 136,186 181,582 727,096 1,134,887 590,141 184,656 2,180,614 46,164 2,134,450 2,226,778 2,134,450</td> <td>0.00534 0.08173 0.18600 0.21546 0.09631 0.03016 0.00956 0.00791 0.00309 0.00034 0.00055 0.00011 0.00059 0.00015 0.00015 0.00015 0.00015 0.00015 0.00015 0.00017 0.00048 0.00174 0.00174 0.00174</td> <td>0.0053 0.0870 0.2730 0.4885 0.5848 0.6150 0.6245 0.6324 0.6355 0.6359 0.6367 0.6367 0.6367 0.6373 0.6382 0.6382 0.6387 0.6388 0.6406 0.6424 0.6422 0.6459 0.6476</td>	6,562,961 100,457,225 228,621,678 264,824,964 118,376,447 37,073,069 11,754,593 9,722,382 3,796,790 413,171 680,932 136,186 181,582 727,096 1,134,887 590,141 184,656 2,180,614 46,164 2,134,450 2,226,778 2,134,450	0.00534 0.08173 0.18600 0.21546 0.09631 0.03016 0.00956 0.00791 0.00309 0.00034 0.00055 0.00011 0.00059 0.00015 0.00015 0.00015 0.00015 0.00015 0.00015 0.00017 0.00048 0.00174 0.00174 0.00174	0.0053 0.0870 0.2730 0.4885 0.5848 0.6150 0.6245 0.6324 0.6355 0.6359 0.6367 0.6367 0.6367 0.6373 0.6382 0.6382 0.6387 0.6388 0.6406 0.6424 0.6422 0.6459 0.6476
60.0 70.0 80.0 90.0 110.0 120.0 130.0 140.0 150.0 160.0 170.0 180.0 200.0 210.0 240.0 250.0 230.0 330.0 350.0 350.0 350.0 350.0 380.0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	N 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	orth Shelf Are 6,562,961 100,457,225 228,621,678 264,824,964 118,376,447 37,073,069 11,754,593 9,722,382 3,796,790 413,171 680,932 136,186 181,582 0 <td>6,562,961 100,457,225 228,621,678 264,824,964 118,376,447 37,073,069 11,754,593 9,722,382 3,796,790 413,171 680,932 136,186 181,582 727,096 1,134,887 590,141 184,656 2,180,614 46,164 2,134,450 2,26,778 2,134,450 2,134,450 2,134,450 2,134,450</td> <td>0.00534 0.08173 0.18600 0.21546 0.09631 0.03016 0.00956 0.00791 0.00309 0.00034 0.00055 0.00011 0.00015 0.00015 0.00059 0.00048 0.00015 0.000177 0.00004 0.00174 0.00174 0.00174 0.00174 0.00174</td> <td>0.0053 0.0870 0.2730 0.4885 0.5848 0.6150 0.6245 0.6324 0.6355 0.6359 0.6364 0.6365 0.6367 0.6373 0.6382 0.6382 0.6388 0.6406 0.6422 0.6459 0.6476 0.6546</td>	6,562,961 100,457,225 228,621,678 264,824,964 118,376,447 37,073,069 11,754,593 9,722,382 3,796,790 413,171 680,932 136,186 181,582 727,096 1,134,887 590,141 184,656 2,180,614 46,164 2,134,450 2,26,778 2,134,450 2,134,450 2,134,450 2,134,450	0.00534 0.08173 0.18600 0.21546 0.09631 0.03016 0.00956 0.00791 0.00309 0.00034 0.00055 0.00011 0.00015 0.00015 0.00059 0.00048 0.00015 0.000177 0.00004 0.00174 0.00174 0.00174 0.00174 0.00174	0.0053 0.0870 0.2730 0.4885 0.5848 0.6150 0.6245 0.6324 0.6355 0.6359 0.6364 0.6365 0.6367 0.6373 0.6382 0.6382 0.6388 0.6406 0.6422 0.6459 0.6476 0.6546
60.0 70.0 80.0 90.0 110.0 120.0 130.0 150.0 150.0 150.0 170.0 180.0 200.0 2210.0 2210.0 2210.0 2210.0 2210.0 2330.0 330.0 350.0 370.0 370.0 370.0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	N 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	orth Shelf Are 6,562,961 100,457,225 228,621,678 264,824,964 118,376,447 37,073,069 11,754,593 9,722,382 3,796,790 413,171 680,932 136,186 181,582 0 <td>6,562,961 100,457,225 228,621,678 264,824,964 118,376,447 37,073,069 11,754,593 9,722,382 3,796,790 413,171 680,932 136,186 181,582 727,096 1,134,887 590,141 184,656 2,180,614 46,164 2,134,450 2,226,778 2,134,450 2,134,450 8,583,965 6,584,933</td> <td>0.00534 0.08173 0.18600 0.21546 0.09631 0.03016 0.00956 0.00791 0.00309 0.00034 0.00055 0.00011 0.00059 0.00059 0.00059 0.00059 0.00048 0.00015 0.00177 0.00004 0.00174 0.00174 0.00174 0.00174 0.00536</td> <td>0.0053 0.0870 0.2730 0.4885 0.5848 0.6150 0.6245 0.6324 0.6355 0.6359 0.6364 0.6367 0.6373 0.6382 0.6382 0.6387 0.6388 0.6406 0.6424 0.6429 0.6476 0.6546 0.6546 0.6546</td>	6,562,961 100,457,225 228,621,678 264,824,964 118,376,447 37,073,069 11,754,593 9,722,382 3,796,790 413,171 680,932 136,186 181,582 727,096 1,134,887 590,141 184,656 2,180,614 46,164 2,134,450 2,226,778 2,134,450 2,134,450 8,583,965 6,584,933	0.00534 0.08173 0.18600 0.21546 0.09631 0.03016 0.00956 0.00791 0.00309 0.00034 0.00055 0.00011 0.00059 0.00059 0.00059 0.00059 0.00048 0.00015 0.00177 0.00004 0.00174 0.00174 0.00174 0.00174 0.00536	0.0053 0.0870 0.2730 0.4885 0.5848 0.6150 0.6245 0.6324 0.6355 0.6359 0.6364 0.6367 0.6373 0.6382 0.6382 0.6387 0.6388 0.6406 0.6424 0.6429 0.6476 0.6546 0.6546 0.6546
60.0 70.0 80.0 90.0 110.0 120.0 130.0 140.0 150.0 150.0 150.0 190.0 200.0 2210.0 250.0 250.0 250.0 250.0 330.0 350.0 350.0 350.0 350.0 350.0 350.0	$\begin{array}{c} 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ $	N 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	orth Shelf Are 6,562,961 100,457,225 228,621,678 264,824,964 118,376,447 37,073,069 11,754,593 9,722,382 3,796,790 413,171 680,932 136,186 181,582 0 <td>6,562,961 100,457,225 228,621,678 264,824,964 118,376,447 37,073,069 11,754,593 9,722,382 3,796,790 413,171 680,932 136,186 181,582 727,096 1,134,887 590,141 184,656 2,180,614 46,164 2,134,450 2,226,778 2,134,450 2,134,450 8,583,965 6,584,933 24,523,050</td> <td>0.00534 0.08173 0.18600 0.21546 0.09631 0.03016 0.00956 0.00791 0.00309 0.00034 0.00055 0.00011 0.00055 0.00059 0.00059 0.00059 0.00048 0.00015 0.00177 0.00004 0.00174 0.00174 0.00174 0.00174 0.00174 0.00174 0.00174 0.00174 0.00175 0.00536 0.00536 0.01995</td> <td>0.0053 0.0870 0.2730 0.4885 0.5848 0.6150 0.6245 0.6324 0.6355 0.6359 0.6364 0.6365 0.6373 0.6388 0.6476 0.6406 0.6442 0.6442 0.6442 0.64546 0.6546 0.6546 0.6600 0.6799</td>	6,562,961 100,457,225 228,621,678 264,824,964 118,376,447 37,073,069 11,754,593 9,722,382 3,796,790 413,171 680,932 136,186 181,582 727,096 1,134,887 590,141 184,656 2,180,614 46,164 2,134,450 2,226,778 2,134,450 2,134,450 8,583,965 6,584,933 24,523,050	0.00534 0.08173 0.18600 0.21546 0.09631 0.03016 0.00956 0.00791 0.00309 0.00034 0.00055 0.00011 0.00055 0.00059 0.00059 0.00059 0.00048 0.00015 0.00177 0.00004 0.00174 0.00174 0.00174 0.00174 0.00174 0.00174 0.00174 0.00174 0.00175 0.00536 0.00536 0.01995	0.0053 0.0870 0.2730 0.4885 0.5848 0.6150 0.6245 0.6324 0.6355 0.6359 0.6364 0.6365 0.6373 0.6388 0.6476 0.6406 0.6442 0.6442 0.6442 0.64546 0.6546 0.6546 0.6600 0.6799
60.0 70.0 80.0 90.0 110.0 120.0 130.0 140.0 150.0 150.0 150.0 180.0 200.0 210.0 220.0 230.0 330.0 330.0 350.0 370.0 380.0 400.0 410.0	$\begin{array}{c} 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ $	N 0 0 0 0 0 0 0 0 0 0 0 0 0	orth Shelf Are 6,562,961 100,457,225 228,621,678 264,824,964 118,376,447 37,073,069 11,754,593 9,722,382 3,796,790 413,171 680,932 136,186 181,582 0 <td>6,562,961 100,457,225 228,621,678 264,824,964 118,376,447 37,073,069 11,754,593 9,722,382 3,796,790 413,171 680,932 136,186 181,582 727,096 1,134,887 590,141 184,656 2,180,614 46,164 2,134,450 2,226,778 2,134,450 2,226,778 2,134,450 2,134,450 2,134,450 2,134,450 2,134,450 2,134,450 2,134,450 2,134,450 2,134,450 2,23,050 26,248,941</td> <td>0.00534 0.08173 0.18600 0.21546 0.09631 0.00956 0.00791 0.00309 0.00034 0.00055 0.00011 0.00055 0.00059 0.00059 0.00059 0.00059 0.00092 0.00048 0.00015 0.00177 0.00004 0.00174 0.00174 0.00174 0.00174 0.00174 0.00174 0.00174 0.00536 0.01995 0.02136</td> <td>0.0053 0.0870 0.2730 0.4885 0.5848 0.6150 0.6245 0.6355 0.6355 0.6355 0.6367 0.6367 0.6373 0.6388 0.6406 0.6406 0.6424 0.6429 0.6476 0.6476 0.6546 0.6600 0.6799 0.7013</td>	6,562,961 100,457,225 228,621,678 264,824,964 118,376,447 37,073,069 11,754,593 9,722,382 3,796,790 413,171 680,932 136,186 181,582 727,096 1,134,887 590,141 184,656 2,180,614 46,164 2,134,450 2,226,778 2,134,450 2,226,778 2,134,450 2,134,450 2,134,450 2,134,450 2,134,450 2,134,450 2,134,450 2,134,450 2,134,450 2,23,050 26,248,941	0.00534 0.08173 0.18600 0.21546 0.09631 0.00956 0.00791 0.00309 0.00034 0.00055 0.00011 0.00055 0.00059 0.00059 0.00059 0.00059 0.00092 0.00048 0.00015 0.00177 0.00004 0.00174 0.00174 0.00174 0.00174 0.00174 0.00174 0.00174 0.00536 0.01995 0.02136	0.0053 0.0870 0.2730 0.4885 0.5848 0.6150 0.6245 0.6355 0.6355 0.6355 0.6367 0.6367 0.6373 0.6388 0.6406 0.6406 0.6424 0.6429 0.6476 0.6476 0.6546 0.6600 0.6799 0.7013
60.0 70.0 80.0 90.0 110.0 120.0 130.0 140.0 150.0 150.0 150.0 170.0 200.0 210.0 240.0 250.0 330.0 350.0 370.0 380.0 390.0 400.0 410.0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	N 0 0 0 0 0 0 0 0 0 0 0 0 0	orth Shelf Are 6,562,961 100,457,225 228,621,678 264,824,964 118,376,447 37,073,069 11,754,593 9,722,382 3,796,790 413,171 680,932 136,186 181,582 0 <td>6,562,961 100,457,225 228,621,678 264,824,964 118,376,447 37,073,069 11,754,593 9,722,382 3,796,790 413,171 680,932 136,186 181,582 727,096 1,134,887 590,141 184,656 2,180,614 46,164 2,134,450 2,226,778 2,134,450 2,226,778 2,134,450 2,226,778 2,134,450 2,226,778 2,134,450 2,226,778 2,134,450 2,226,778 2,134,450 2,230,50 26,248,941 34,741,347</td> <td>0.00534 0.08173 0.18600 0.21546 0.09631 0.00956 0.00791 0.00309 0.00034 0.00055 0.00011 0.00055 0.00011 0.00059 0.00092 0.00092 0.00048 0.00015 0.00177 0.00004 0.00174 0.00236 0.00236 0.00236 0.00174 0.00174 0.00236 0.00236 0.00236 0.00236 0.00174 0.00236 0.00236 0.00236 0.00236 0.00174 0.00236 0.002000000000000000000000000000000000</td> <td>0.0053 0.0870 0.2730 0.4885 0.5848 0.6150 0.6245 0.6324 0.6355 0.6355 0.6355 0.6367 0.6373 0.6388 0.6406 0.6406 0.6424 0.6429 0.6476 0.6479 0.6476 0.6546 0.6600 0.6799 0.7013 0.7296</td>	6,562,961 100,457,225 228,621,678 264,824,964 118,376,447 37,073,069 11,754,593 9,722,382 3,796,790 413,171 680,932 136,186 181,582 727,096 1,134,887 590,141 184,656 2,180,614 46,164 2,134,450 2,226,778 2,134,450 2,226,778 2,134,450 2,226,778 2,134,450 2,226,778 2,134,450 2,226,778 2,134,450 2,226,778 2,134,450 2,230,50 26,248,941 34,741,347	0.00534 0.08173 0.18600 0.21546 0.09631 0.00956 0.00791 0.00309 0.00034 0.00055 0.00011 0.00055 0.00011 0.00059 0.00092 0.00092 0.00048 0.00015 0.00177 0.00004 0.00174 0.00236 0.00236 0.00236 0.00174 0.00174 0.00236 0.00236 0.00236 0.00236 0.00174 0.00236 0.00236 0.00236 0.00236 0.00174 0.00236 0.002000000000000000000000000000000000	0.0053 0.0870 0.2730 0.4885 0.5848 0.6150 0.6245 0.6324 0.6355 0.6355 0.6355 0.6367 0.6373 0.6388 0.6406 0.6406 0.6424 0.6429 0.6476 0.6479 0.6476 0.6546 0.6600 0.6799 0.7013 0.7296

• .

2 1

-

• •

Table C-l.--Continued.

.ength (mm)	Males	Females	Unsexed	Total	Proportion	Cumulativ proportio
	1/ 520 005				0.07180	······································
440.0	10, 329, 993	47,075,007	0	39,192,303	0.03109	0.7071
450.0	14,137,847	17,073,003	U	31,833,430	0.02390	0.0150
460.0	9,308,663	18,210,490	U	27,519,153	0.02239	0.8354
470.0	9,445,618	22,523,925	0	31,969,543	0.02601	0.8614
480.0	10,354,296	16,120,574	0	26,474,870	0.02154	0.8829
490.0	- 14,216,175	11,261,531	· 0	25,477,706	0.02073	0.9037
500.0	5,994,698	10,308,132	0	16,302,831	0.01326	0.9169
510.0	5,177,486	3,949,408	0	9,126,894	0.00743	0.9243
520.0	6,810,955	9,127,081	0	15,938,036	0.01297	0.9373
530.0	4,721,132	7,582,772	. 0	12,303,904	0.01001	0.9473
540.0	5,586,814	3,996,434	0	9.583.248	0.00780	0.9551
550.0	1.411.871	7.631.335	0	9.043.207	0.00736	0.9625
560 0	2 636 875	4 091 068	ņ	6 727 943	0 00547	0 9679
570 0	1 454 961	1 909 685	ñ	3 364 646	0.00274	0 9707
580 0	817 887	7 /56 521	ő	8 374 408	0.00274	0 077/
500.0	147 852	7,430,321	0	2 800 454	0.00235	0.9774
590.0	103,832	2,720,804		2,890,838	0.00233	0.7/90
600.0	802,350	1,407,202	Û,	2,209,352	0.00185	0.9810
610.0	1,072,530	1,424,056	, U	2,496,587	0.00203	0.9836
620.0	1,385,068	1,011,441	0	2,396,509	0.00195	0.9856
630.0	502,425	511,573	0	1,013,998	0.00082	0.9864
640.0	571,177	189,211	0	760,388	0.00062	0.9870
650.0	491,411	758,882	0	1,250,293	0.00102	0.9881
660.0	126,643	631,427	0	758,070	0.00062	0.9887
670.0	541,047	878,551	0	1,419,598	0.00115	0.9898
680.0	235,375	210,016	0 [°]	445.391	0.00036	0.9902
690.0	189 211	526.170	Ō	715.382	0.00058	0.9908
700 0	527 507	3 803 153	0	4 330 660	0 00352	0 9943
710 0	368 155	678 819	ň	1 046 975	0.00085	0 0051
720.0	0	2 /01 722	ŏ	2 /01 722	0.00005	0.9931
720.0	/77 57/	492 201	ŏ	1 110 945	0.00175	0.7771
70.0	457,574	/ 77 110	0	5// /10	0.00091	0.9900
740.0	13,292	473,119	U	240,410	0.00044	0.9985
760.0	U .	237,412		237,412	0.00019	0.9986
770.0	81,225	380,089	U	461,314	0.00038	0.9990
780.0	0	71,524	0	71,524	0.00006	0.9991
790.0	. 0	456,353	0	456,353	0.00037	0.9995
800.0	· 0	237,412	0	237,412	0.00019	0.9996
840.0	0	380,089	0	380,089	0.00031	1.0000
TOTAL	166,935,088	279,595,885	782,601,980	1,229,132,953		
÷.,		West	ern Shelf 7	Area		
10.0	0	0	292,798	292,798	0.00016	0.0001
00.0	U	U	202, YY/ -	305,997	0.00020	0.0001
70.0	0	0	402,391	402,391	0.00022	0.0005
80.0	0	0	7,506,146	7,506,146	0.00418	0.0047
90.0	0	· 0	28,985,161	28,985,161	0.01616	0.0209
100.0	. 0	0	43,812,061	43,812,061	0.02442	0.0453
110.0	· O	0	79,352,226	79,352,226	0.04423	0.0895
120.0	Ō	. 0	66,984,832	66,984.832	0.03734	0.1269
130.0	ň	. 0	61,299,799	61,200,700	0.03417	0.1610
140 0		, o	68 388 290	68 388 200	0.03812	0 1002
	. U	· .	63 232 107	63 232 107	0 03524	0.1772
150 0	U	v		UJ, LJL, 171	0.00024	0.2344
150.0	•	•	37 071 / 74	77 074 / 74	0 03444	A 3666
150.0	0	0	37,871,426	37,871,426	0.02111	0.2555
150.0 160.0 170.0	0 43,726	0 89,729	37,871,426 11,915,614	37,871,426 12,049,068	0.02111 0.00672	0.2555

North	Sholf	2 roz	

Table C-1. --Continued.

inna)	Males	Females	Unsexed	Total	Proportion	Cumulative proportion
190.0		4 042 785	6 800 191	30 779 202	0 02215	0 202/2
200.0	20,073,121 37 032 991	4,042,303	67 009	17,130,303 17 1/5 09/	0.02213	U.27343 0 71097
210.0	16 302 544	13, 147, 193	01,900	47,443,904 27 574 411	0.02044	0.3190/
220.0	16 733 020	13 710 043		30 452 072	0.01555	0.33322
230 0	15 367 074	6 76/ 318	, U 0	22 111 201	0.01077	0.33219
240 0	6 452 776	2 371 004	0 0	8 877 840	0.01252	0.30432
250 0	6 327 704	3 334 801	ň	9 662 507	0 00570	0.30745 0.37782
260.0	2,109 312	1 302 757	ň	3,502,068	0.00105	0.31402
270.0	3,881 920	1,982,286	, O	5,864 205	0.00327	0.38004
280.0	2,829,902	2.141.437	ů .	4,971,338	0.00277	0_38281
290.0	2,550,225	1.277 181	õ	3,827,405	0.00213	0.38495
300.0	4,746.016	1,470,414	Ő	6,216,430	0.00346	0.38841
310.0	1,268,837	6.696.271	Ō	7,965,108	0.00444	0.39285
320.0	3,732,748	1,123,964	. 0	4,856.712	0.00271	0.39556
330.0	9,949,711	8,679.075	. 0	18,628.787	0.01038	0.40594
340.0	13,014,597	17,842,441	Ō	30,857,038	0.01720	0.42314
350:0	18, 136, 685	13,828,252	0	31,964,937	0.01782	0.44095
360.0	22,893,172	20,196,419	0	43,089,592	0.02402	0.46497
370.0	26,111,637	26,491,691	0	52,603,328	0.02932	0.49429
380.0	34,031,275	30,484,740	` ``	64,516,015	0.03596	0.53025
390.0	28,503,268 /	40,274,257	0	68,777,524	0.03833	0.56858
400.0	29,860,973	30,202,985	0	60,063,958	0.03348	0.60206
410.0	30,516,200	33,178,417	0	63,694,618	0.03550	0.63756
420.0	19,541,069	30,136,216	0	49,677,285	0.02769	0.66525
430.0	27,868,622	28,672,161	т о	56,540,783	0.03151	0.69676
440.0	14,092,747	21,616,287	O ·	35,709,034	0.01990	0.71667
450.0	17,364,504	24,642,336	0	42,006,840	0.02341	0.74008
460.0	15,146,890	12,719,364	· O	27,866,254	0.01553	0.75561
470.0	16,024,348	21,362,195	0	37,386,544	0.02084	0.77645
480.0 (00 0	10,042,591	19,764,676	0	55,807,267	0.01996	0.79641
4 90.0	9,858,941	23,455,594	0	55,514,336	0.01857	0.81498
500.0	17,022,954	21,150,551	0	38,761,471	0.02160	0.83658
520.0 /	13,112,201	22,100,1000		37,333,730	0.02081	0.85/39
520.0	11 608 550	26,200,04/	· 0	27,112,010		0.87395
540.0	5 407 142	24,771,147 15 550 582	0	JO,409,090	0.02034	0.09429
550 0	4 164 304	8 110 400	ο Ο Ο	21,047,743 12 27/ 00/	0.011/3	0.90002
560.0	5 188 381	8 053 077	. O.	13 261 658	0.00004	0.71200
570.0	3 042 298	12 841 954	n n	15 884 252	0:00730	0.72024
580.0	1 855 772	6 764 037	Ň	8 610 800	0.0065	0.72710
590.0	2.381 523	12 125 234	ñ	14 504 757	0 00900	n o/ 100
500.0	5,188,524	9,816,839	່ ດີ	15,005 363	0_00836	0 05075
510.0	2.019.927	9.469.648	ŏ	11,489,575	0,00640	0.95675
520.0	958,447	11,280,299	ō	12,238.747	0.00682	0.96357
530.0	1,274,159	8.354.980	0	9,629,139	0.00537	0.96894
40.0	1,032,024	9,224,390	ŏ	10,256,413	0.00572	0.97466
50.0	1,387,096	8,231,874	. 0	9,618,970	0.00536	0.98002
60.0	1,532,828	7,150,308	0	8,683,137	0.00484	0.98486
570.0	696,353	5,233,916	0	5,930,269	0.00331	0.98816
80.0	576,802	4,821,935	0	5,398,737	0.00301	0.99117
590.0	264,350	3,917,210	0.	4,181,560	0.00233	0.99350
700.0	216,071	2,693,738	0	2,909,808	0.00162	0.99513
710.0	142,953	2,117,187	0	2,260,140	0.00126	0.99639
720.0	77,880	1,339,254	. 0	1,417,134	0.00079	0.99718
30.0	41,404	1,371,199	. 0	1,412,603	0.00079	0.99796
740.0	0	1,718,222	0	1,718,222	0.00096	0.99892
50.0	· · O	1,090,959	0	1,090,959	0.00061	0.99953
60.0	. 0	133,454	· 0	133,454	0.00007	0.99960
70.0	0	200 624	n	200 624	0 00011	0 00071

Table C-l. --Continued.

Western Shelf Area

Length (而n)	Males	Females	Unsexed	Total	Proportion	Cumulative proportion
780.0	0	126,213	0	126,213	0.00007	0,99978
790.0	0	126,213	0	126,213	0.00007	D.99986
800.0	0	82,487	0	82,487	0.00005	0.99990
810.0	0	177,180	0	177,180	0.00010	1.00000
TOTAL	583,495,058	719,081,696	491,575,657	1,794,152,411		

Table C-2.--Population estimates by sex and size groups for Pacific cod from the 1990 cooperative U.S.-Russian bottom trawl survey of the Bering Sea shelf.

ength (mm)	Males	Females	Unsexed	Total	Proportion	Cumulative proportion
80.0	0	353,672	0	353,672	0.00092	0.00092
90.0	0	0	1,534,325	1,534,325	0.00399	0.00491
100.0	0	· 0	3,849,103	3,849,103	0.01002	0.01493
110.0	. 0.	. 0	6,094,635	6,094,635	0.01586	0.03080
120.0	841.397	964,420	6,359,187	8,165,004	0.02125	0.05205
130.0	367.098	1,056,384	5,315,489	6,738,971	0.01754	0.06960
140.0	359, 188	964,420	13,699,687	15,023,294	0.03911	0.10870
150_0	1.567.006	974,973	7,225,033	9,767,012	0.02542	0.13413
160.0	3,128,002	2,292,655	7,142,756	12,563,413	0.03270	0.16683
170.0	1,191,677	1,906,925	4,543,174	7,641,776	0.01989	0.18672
180.0	1.767.962	1.447.655	2,702,965	5,918,582	0.01541	0.20213
190.0	2,237,582	1 164 426	1.772.622	5,174,629	0.01347	0.21560
200.0	1 191 413	862,552	2.089.006	4,142,971	0.01078	0.22639
210 0	101 592	808 813	532,406	1.442.811	0.00376	0.23014
220 0	04/ 762	274 044	692 622	1 911 429	0.00498	0.23512
230.0	820 860	556 108	561 408	1 938 385	0.00505	0.24016
2/0.0	/54 970	715 181	645 291	1 817 311	0 00473	0.24489
240.0	3 53/ 054	1 421 411	1 003 785	6 159 452	0.01603	0.26093
250.0	2 797 044	1 713 771	358 /05	4 850 332	0.01265	0 27358
200.0	2,101,000	2 / 25 527	/30 19/	4 983 014	0.01207	0 28655
270.0	2,001,293	2,403,327	450,174	5 177 7/0	0.012/3	0.30007
280.0	2,390,094	2,303,738	213,097	5 707 702	0.01509	0.3000
290.0	1,887,008	3,691,687	215,097	10,000,157	; 0.01506	0.313
300.0	5,998,409	4,839,045	(1,099	10,909,155	0.02040	0.3433
310.0	5,625,329	2,689,973	U U	8,315,301	0.02165	0.30313
320.0	5,038,779	4,206,272		9,245,050	0.02407	0.38922
330.0	2,408,838	3,049,705	.0	5,458,543	0.01421	0.40343
340.0	3,643,049	3,009,465	17 O	6,652,514	0.01732	0.42074
350.0	4,927,008	4,494,900	71,699	9,493,608	0.02471	0.44546
360.0	6,975,094	4,416,409	0	11,391,502	0.02965	0.47511
370.0	2,702,011	3,059,323	0	5,761,334	0.01500	0.4901
380.0	2,353,768	1,975,371	· · · 0	4,329,139	0.01127	0.50138
390.0	3,064,186	2,294,812	0	5,358,998	0.01395	0.51533
400.0	1,132,473	2,379,251	O _	3,511,725	0.00914	0.52447
410.0	1,335,455	3,684,595	0	5,020,049	0.01307	0.53754
420.0	1,544,307	1,721,025	0	3,265,333	0.00850	0.54604
430.0	458,244	, 1,372,554	. 0	1,830,798	0.00477	0.55080
440.0	493,007	1,350,605	· 0	1,843,612	0.00480	0.55560
450.0	1,535,703	2,012,957	· 0	3,548,660	0.00924	0.56484
460.0	967,674	174,324	· O /	1,141,997	0.00297	0.5678
470.0	· 234,921	596,187	71,699	902,807	0.00235	0.57016
480.0	2.049.046	1.278.961	0	3,328,008	0.00866	0.57882
490.0	629,136	1.164.414	0	1,793,550	0.00467	0.58349
500.0	1 200 700	1 097 466		2, 397, 175	0.00624	0.5897
510.0	2 281 152	1 796 498	, i i	4.077.650	0.01061	0.6003
520.0	2 281 422	2 177 556		4 458 978	0.01161	0.6119
520.0	2,201,422	2 359 441	ũ.	5 776 819	0 01504	0 62699
5/0.0	2 984, 402	3 293 466	0	6 170 067	0.01606	0 6430
540.0	2,000,002	3,203,400	. , 0	3 870 527	0.01000	0.6531
JJU.U	- 1,440;402 - 354-779	2,433,043 EE1 ED0	· · · ·	2 807 059	0 00731	0.0201
500.0	2,200,400	1 077 170	. U	5 / 12 120	0.00751	0.00040
570.0	4,339,701	1,075,428		5,413,120	0.01409	0.0143
580.0	5,182,774	2,036,132		2,210,900	0.01450	0.00014
590.0	4,057,279	2,288,204	U	0,343,403 E 2/4 250	0.01002	0.7040
600.0	4,108,627	1,535,025	Ŭ	5,041,050	0.01409	0.7195
610.0	4,634,743	1,163,856	· . 0	5,798,599	0.01509	0.7544
620.0	3,849,712	1,605,690	0	5,455,402	0.01420	0.74864
630.0	2,729,829	· 1,752,317	0	4,482,146	0.01167	0.7603

Standard U.S. Shelf Area

Table C-2. --Continued.

Standard U.S. Sherr	Area
---------------------	------

Length (mm)	Males	Females	Unsexed	Total	Proportion	Cumulative proportion
640.0	2,468,068	2,257,381	0	4.725.449	0.01230	0.77261
650.0	1,906,180	3,436,442	0	5.342.621	0.01391	0 78651
660.0	4.476.244	3,800,489	ň	8 276 733	0 02155	0 80804
670 0	3 978 667	2 220 881	ő	4 209 5/9	0.02155	0.00000
480 0	3 744 009	017 02/	0	0,200,340	0.01010	0.02422
600.0	3,700,090	915,924		4,680,022	0.01218	0.83640
390.0	3,077,987	1,376,331	U	4,654,518	0.01212	0.84852
700.0	2,351,796	2,400,736	. 0	4,752,533	0.01237	0.86089
710.0	1,779,637	1,951,562	0	3,731,199	0.00971	0.87060
720.0	3,320,498	2,037,301	0	5,357,798	0.01395	0.88455
730.0	654,176	1,421,169	0	2,075,346	0.00540	0.88995
740.0	1,799,691	750,765	0	2,550,456	0.00664	0.89659
750.0	816,876	3,369,113	0	4,185,988	0.01090	0.90749
760.0	2,223,547	1, 113, 293	. 0	3,336,840	0 00869	0 91617
770.0	2.341.975	1 527 339	ň	3 860 31/	0 01007	0.02425
780.0	1 382 429	1 981 130	· .	3 347 540	0.01007	0.92023
790 0	962 060	1 306 401	109 005	2,202,207	0.00676	0.95500
800.0	1 200 225	1,370,091	100,003	2,440,730	0.00657	0.94137
810.0	1,209,223	1,209,082	U	2,418,907	0.00630	0.94767
810.0	895,926	576,148	0	1,472,074	0.00383	0.95150
820.0	1,311,741	1,962,991	· 0	3,274,732	0.00852	0.96002
830.0	860,671	395,628	0	1,256,299	0.00327	0.96329
840.0	142,136	47,271	0	189,406	0.00049	0.96379
850.0	52,971	388,104	: 0	441.075	0.00115	0.96494
860.0	552.835	838, 122	. 0	1 390 957	0 00362	0 96856
870.0	48.994	1 426 135	· .	1 / 75 128	0.00302	0.70000
880 0	515 022	600 161	ŏ	1 114 007	0.00364	0.97240
800.0	687 210	2 / 57 575	ő	2,010,005	0.00291	0.97530
000.0	770 701	2,457,575	U U	2,944,785	0.00767	0.98297
900.0	210,191	293,490	. 0	564,286	0.00147	0.98444
910.0	904,754	280,784	0	1,245,538	0.00324	0.98768
920.0	490,219	427,091	· 0	917,310	0.00239	0.99007
930.0	120,038	785,807	0	905,845	0.00236	0.99242
940.0	615,814	129,486	0	745,300	0.00194	0.99436
950.0	0	52,971	. 0	52,971	0.00014	0.99450
960.0	48,994	421,994	Ó Í	470 988	0 00123	0 00573
970.0	- 0	48 994	0	48 004	0.00013	0.00594
980.0	0	50 844	ň	50,844	0.00013	0.00500
990 0	ň	180 296	ŏ	190,044	0.00013	0.99399
1000 0	õ	370 404	100.005	100,290	0.00047	0.99040
1010.0		370,090	100,005	478,701	0.00125	0.99770
1010.0	202 /55	150,415	0	150,413	0.00039	0.99809
1020.0	282,455	0	0	282,455	0.00074	0.99883
1040.0	· 0	44,932	0	44,932	0.00012	0.99895
1050.0	0	404,497	0	404.497	0.00105	1.00000
TOTAL	169,894,591	146,848,046	67,413,484	384,156,121		• ,
		North	Shelf Are	a	·	
170 0	n	86 200	. 0	84 200	0.00540	0.00540
100 0	162 519	. 00,200	Š,	100,200	0.00309	0.00569
220 0	86 200	1/1 770	U O	102,218	0.01073	0.01642
270.0	00,200	766,141 776 COC	U .	221,339	0.01502	0.05144
230.0	70 ((0	202,211	U	202,277	0.01335	0.04480
240.0	70,669	86,200	. 0	156,870	0.01036	0.05515
250.0	329,270	0	0	329,270	0.02174	0.07689
260.0	470,609	45,407	. · O	516,016	0.03407	0.11096
270.0	703,947	313,739	0	1,017.686	0.06719	0.17814
280.0	380.325	572.340	Ó	952 665	0 06289	0 2/102
290.0	602,216	243,070	ō	845 284	0 05580	0 2049/
300.0	344, 801	431 001		775 802	0.05100	0.27004
		-31,001		115,002	0.03122	0.34805
			•			

THIS PAGE INTENTIONALLY LEFT BLANK
Table C-2. --Continued.

(mm)	Males	Females	Unsexed	Total	Proportion	Cumulat proport
80.0	0	0	87.305	87.305	0.00050	0.00
90.0	n i	ň	66 330	66 330	0.00038	0.00
100.0	70 410	. 0	87 305	157 02/	0.000000	0.00
110.0	10,019	· 0	261 016	761 016	0.00070	0.00
120.0		47 704	1 201 300	1 247 405	0.00747	0.00
120.0	. 0	2/5 //9	74/ 777	1,203,073	0.00717	0.01
150.0		243,440	/04,//3	1,010,221	0.00374	0.01
140.0	(0,944	70,619	1,093,019	1,240,582	0.00704	0.02
150.0	133,015	94,080	611,138	838,232	0.00476	0.02
160.0	466,091	124,791	436,527	1,027,409	0.00583	0.03
170.0	940,450	124,791	87,305	1,152,546	0.00654	0.04
180.0	66,330	191,121	0	257,451	0.00146	0.04
190.0	66,330	0	174,611	240,941	0.00137	0.04
200.0	700,188	383,988	0	1,084,176	0.00616	0.04
210.0	195,056	1,248,362	0	1,443,417	0.00819	0.05
220.0	773,286	1,330,025	0	2,103,311	0.01194	0.06
230.0	219,965	282.361	0	502,326	0.00285	0.07
240.0	3.818.170	1.543.664	Ō .	5.361.834	0.03044	0.10
250 0	3 142 477	1 775 531	'n	4 918 008	0 02792	0 17
260.0	2 370 353	1 095 660	ů n	3 466 013	0 01068	0.15
270.0	2,370,333	2 053 005	0	5 8/4 022	0.01700	0.1
280.0	2 616 076	057 / 21	. 0	7 571 / 55	0.03317	0.10
200.0	2,014,034	937,421	0	3,371,433	0.02028	0.20
290.0	1,725,090	207,428	U	1,932,525	0.01097	0.2
300.0	1,100,414	1,844,316	. U	2,999,730	0.01705	0.2
310.0	332,340	(55,929	U	1,088,269	0.00618	0.2
320.0	572,318	2,351,902	· 0	2,924,220	0.01660	0.2
330.0	797,910	425 , 149	0	1,223,060	0.00694	0.20
340.0	3,326,075	1,325,213	. 0	4,651,288	0.02641	0.28
350.0	2,375,103	1,545,968	· 0	3,921,071	0.02226	0.3
360.0	4,814,310	1,282,084	0	6,096,395	0.03461	0.34
370.0	241,911	4,385,815	0	4,627,726	0.02627	0137
380.0	6.393.663	2,209,332	0	8,602,995	0.04884	0.4
390.0	1.679.328	2,477,877	. 0	4,157,204	0.02360	0.44
400.0	2.555.959	1 203 293	Ō	3,759,252	0.02134	0.4
410 0	3 443 927	761 383	· .	4 205 310	0 02387	0.4
420 0	475 586	2 769 275	· 0	3 244 842	0 01842	0.4
420.0	1 710 252	571 286	, č	2 200 538	0 01300	0.5
430.0	1 1 42 447	1 021 200	0	2,290,000	0.01/10	0.5
440.0	7,402,007	1,021,290	U	2,403,931	0.01410	0.5
450.0	2,2/1,212	1,290,320	· U	3,861,641	0.02192	0.5
460.0	1,785,781	1,713,634	, U	3,497,415	0.01986	. 0.5
470.0	2,609,855	1,332,183	0	3,942,038	0.02238	0.5
480.0	1,662,681	1,479,420	· 0	3,142,101	0.01784	0.6
490.0	3,409,441	1,770,233	0	5,179,674	0.02941	0.6
500.0	2,052,021	1,987,364	0	4,039,386	0.02293	0.6
510.0	2,922,842	2,149,476	, O	5,072,318	0.02880	0.6
520.0	1,557,364	1,239,426	0	2,796,790	0.01588	.0.7
530.0	585,450	1,540,346	0	2,125,796	0.01207	0.7
540.0	1.488.826	1.316.810	0	2,805,636	0.01593	0.7
550.0	1.781.884	572.075	õ	2,353,958	0.01336	0.7
560 0	008 381	1 925 734	Ő	2 924 115	0 01660	0.7
570 0	483 057	504 034	, or a	087 001	0.00560	0.7
590.0	200,905	509,654	0	900 755	0.00/50	. 0.7
500.0	1 202 544	1 / 15 190	0	2 207,333	0.00439	0.7
590.0	1,292,300	1,413,109	U	2,101,100	0.01557	0.7
600.0	928,239	1,139,185	U.	2,007,421	0.01174	0.8
610.0	995,506	605,254	U	1,596,560	0.00906	0.8
620.0	261,935	2,235,212	r (10	2,497,148	0.01418	0.8
630.0	642,605	236,084	0	878,688	0.00499	0.8
640.0	855,906	1,442,458	0	2,298,364	0.01305	0.8
650.0	1,068,068	547,358	0	1,615,426	0.00917	0.8
660.0	848.419	2,421,106	· 0	3,269,525	0.01856	0.A
			-	-, ,		
			· ·			
		н. Н				

Western	Shelf	Area	•

rea

		- 	- C	161	•		
Table	C-2Co	ntinued.		•	<u>,</u>		· · · · · · · · · · · · · · · · · · ·
, ¹ .	· · · ·	Wes	stern	Shelf	Area		
Length (mm)	Males	Females		Unsexed	Total	Proportion	Cumulative proportion
670 0 -	598 617	980 215		·	1 578 833	2 0 00896	0 88653
680 0	644 482	686 351	· `	. 0	1 330 837	0.00056	0.000000
690.0	1 008 678	601 357			1 700 035	0.00750	0.00374
700.0	1 989 777	1 081 979		ň	3 071 75/	0.00705	0.92118
710.0	1 283 560	207.385		Ő	1 490 945	0.00846	n 92964
720.0	1.177.040	388,814		Ő	1.565.853	0.00889	0.93853
730.0	832,987	859.842		, õ	1.692.829	0.00961	0.94814
740.0	560,200	241,911	- 1 ·	0	802,111	0.00455	0.95269
750.0	231,422	627.041		Ō	858,462	0.00487	0.95757
760.0	434,803	1.198.298		· 0	1,633,101	0.00927	0.96684
770.0	1.282.084	52,846		0	1.334.930	0.00758	0.97442
780.0	126,494	255,396		Ō	381.890	0.00217	0,97659
790.0	82,989	249,818		0	332,807	0.00189	0.97848
800.0	0	1,134,513		Ō	1,134,513	0.00644	0.98492
810.0	. 0	52,846		0	52,846	0.00030	0.98522
820.0	0	1,048,191		0	1,048,191	0.00595	0.99117
830.0	178,750	52,846	5	0	231,596	0.00131	0.99248
840.0	0	135,574		0	135,574	0.00077	0.99325
850.0	97,236	0		. 0	97,236	0.00055	0.99380
860.0	70,619	55,742		0	126,361	0.00072	0.99452
870.0	⁵ 0	107,824	· -	0	107,824	0.00061	0.99513
890.0	· 0	557,321		0	557,321	0.00316	0.99830
920.0	0	94,080		0	94,080	0.00053	0.99883
930.0	0	52,846		Ŭ,	52,846	0.00030	0.99913
960.0	· 0	41,494	• · · · · · · · · · · · · · · · · · · ·	0	41.494	0.00024	0.99937
980.0	55,742	0		· Ō	55.742	0.00032	0.99968
1010.0	0.	55,742	-	0	55,742	0.00032	1.00000
TOTAL	94,359,602	76,912,339		4.871.529	176.143.470	n de la companya de l En la companya de la c	

Table C-3. --Population estimates by sex and size groups for Yellowfin sole spp. from the 1990 cooperative U.S.-Russian bottom trawl survey of the Bering Sea shelf.

Standard U.S. Shelf Area

Length (mm)	Males	Females	Unsexed	Total	Proportion	Cumulative proportion
70.0		1.805.128	0	1.805.128	0.00018	0.00018
80.0	1 805 128	1,805,128	· 0	3,610,257	0.00036	0.00054
90.0	2 631 824	4 480 188	Õ	7 112 011	0.00070	0.00124
100 0	17 110 669	9 793 930	Ō	26 904 599	0.00266	0.00390
110 0	32 9/1 009	13 067 636	Ő	46 008 645	0 00455	0.00846
170.0	35,202,056	20 586 874	. 0	40,000,040 64 878 930	0.00433	0.01488
170.0	33,272,000	77 /57 747	ŏ	67 131 /88	0 00666	0.02152
140.0	35,077,124	35,452,505	ů ů	71 203 454	0.00004	0.02152
150.0	02 047 204	40 053 /0/	· 0	162 020 700	0.00705	0.02057
140.0	100 800 578	05 812 030	0	106 621 558	0.010/4	0.04407
170.0	121 019 257	117 017 100	Ő	270 971 757	0.01740	0.00401
170.0	121,910,237	145 531 570	0	Z5/ 0/1 555	0.02574	0.00/01
100.0	107,320,023	107 277 070	0	/10 870 724	0.03312	0.12293
190.0	211,000,241	173,233,079	0	410,039,320	0.04088	0.10339
200.0	254,575,962	223,619,043		400,190,007	0.04555	0.20894
210.0	252,549,269	239,706,103	U	492,200,374	0.04872	0.25/60
220.0	267,101,359	208,798,342	0	4/5,899,701	0.04710	0.30477
230.0	265,956,133	268,210,331	U	554,100,404	0.05287	0.35764
240.0	289,897,754	259,828,506	Ű	549,726,260	0.05441	0.41205
250.0	283,098,395	264,662,522	0 ·	547,760,917	0.05422	0.46626
260.0	321,540,831	224,428,833	0	545,969,664	0.05404	0.52030
270.0	274,561,690	234,482,188	0	509,043,878	0.05038	0.57068
280.0	285,151,287	253,983,501	0	539,134,788	0.05336	0.62404
290.0	348,940,234	249,212,325	0	598,152,559	0.05920	0.68325
300.0	332,255,390	201,146,149	0	533,401,539	0.05279	0.73604
310.0	313,631,660	259,051,697	· 0	572,683,358	0.05668	0.79272
320.0	202,100,742	295,497,072	0	497,597,814	0.04925	0.84198
330.0	133,283,654	354,286,805	0	487,570,459	0.04826	0.89023
340.0	50,879,410	332,808,767	0	383,688,176	0.03798	0.92821
350.0	31,539,698	253,510,216	0	285,049,915	0.02821	0.95642
360.0	9,305,297	169,708,608	0	179,013,905	0.01772	0.97414
370.0	5,076,631	105,471,204	`O	110,547,835	0.01094	0.98508
380.0	1,956,503	71,390,885	· O	73,347,387	0.00726	0.99234
390.0	0	34,595,033	0	34,595,033	0.00342	0.99577
400.0	0	18,039,529	0	18,039,529	0.00179	0.99755
410.0	. 0	11,030,786	0	11,030,786	0.00109	0.99864
420.0	0	6,504,553	, <u> </u>	6,504,553	0.00064	0.99929
430.0	0	5,504,651	0	5,504,651	0.00054	0.99983
460.0	0	1,694,899	0	1,694,899	0.00017	1.00000
TOTAL	4,783,611,882	5,319,772,378	0	10,103,384,260		
		Nort	h Shelf Ar	rea		
90.0	566.877	0	0	566,877	0.00109	0.00109
100.0	1.333.779	347,422	0	1,681,201	0.00324	0.00433
120.0	471.337	0	Ō	471.337	0.00091	0.00524
130.0	690.792	1,005.788	Ô.	1,696,580	0.00327	0.00851
140.0	2.525.230	3,335,636	0	5,860,866	0,01130	0.01981
150.0	3,465,237	1.813.302	Ō	5,278,539	0.01017	0.02998
160.0	6.422.483	8,121,267	Ō	14,543,750	0,02803	0.05801
170 0	13 042 830	11,956 342	Ō	24,999,172	0.04818	0.10620
180 0	23 544 474	22 607 830	ő	46 262 503	0.08917	0 10574
100.0	25,550,074	20 475 570	, ů	55 034 077	0 10608	0 301//
200 0	20,007,407	33 252 2/2	, o	63 KAR 110	0 12272	0.20144
200.0		JJ, EJE, 646		03,000,110	0.16612	0.42410

NOT CII DIICTI ALCA	North	Shelf	Area
---------------------	-------	-------	------

Length (mm)	Males	Females	Unsexed	Total	Proportion	Cumulative
210.0	26 126 288	37 484 753	0	63.611.041	0.12261	0.54676
220.0	20,720,200	27 408 008	n o o	47.731.600	0.09200	0.63876
230.0	15 368 453	18 716 797	0	34,085,250	0.06570	0 70446
240 0	8 946 738	7 544 519	Ő,	16,491,257	0.03179	0.73624
250.0	6 442 731	8 924 482	Ō	15.367.214	0.02962	0.76586
260.0	2 459 058	6.442.904	. 0	8,901,962	0.01716	0.78302
270 0	7 277 283	5.076.107	Ō	12,353,391	0.02381	0.80683
280 0	2 605 399	5 008 389	Ŏ.	7.613.788	0.01467	0.82150
290 0	2 386 582	4.369.082	Ō	6.755.663	0.01302	0.83452
300 0	2 553 759	3 259 731	0	5,813,490	0.01121	0.84573
310 0	1 080 754	2,700,851	. 0	3.781.605	0.00729	0.85302
320.0	2,790,580	.3, 190, 953	. 0	5,981,533	0.01153	0.86455
330.0	1.968.039	3,966,893	0	5,934,932	0.01144	0.87599
340.0	813,991	3,802,310	0	4,616,301	0.00890	0.88488
350.0	694.117	5,212,687	· · · · · · · · · · · · · · · · · · ·	5,906,804	0.01138	0.89627
360.0	1,175,733	7,662,883	· 0 -	8,838,616	0.01704	0.91330
370.0	1.496.568	6,466,603	0	7,963,172	0.01535	0.92865
380.0	347,422	10,215,852		10,563,274	0.02036	0.94901
390.0	1.069.730	9,317,258	· 0,	10,386,989	0.02002	0.96903
400.0	0	4,336,666	0	4,336,666	0.00836	0.97739
410.0	186,641	6,252,286	. 0	6,438,927	0.01241	0.98980
420.0	. 0	1,855,080	0	1,855,080	0.00358	0.99338
430.0	0.	1,542,589	- O A	1,542,589	0.00297	0.99635
440.0	0	842,501	0	842,501	0.00162	0.99797
450.0	. 0	623,045	0	623,045	0.00120	0.99917
500.0	0	428,060	<u> </u>	428,060	0.00083	1.00000
TOTAL	214,171,972	304,656,691	0	518,828,663		

Western shelf Area

·, · .

230.0	69,179	0 ·		- O	69,179	0.01493	0.01493
240.0	0	69,179		· 0 ·	69,179	0.01493	0.02985
250.0	0	69,179		0	69,179	0.01493	0.04478
260.0	138,358	0		· 0	138,358	0.02985	0.07463
270.0	276,716	í · O	1.1.1	0	276,716	0.05970	0.13433
280.0	345,895	. 0		0	345,895	0.07463	0.20896
290.0	345,895	138,358		0	484,252	0.10448	0.31343
300.0	138,358	207,537	· .	· O	345,895	0.07463	0.38806
310.0	138,358	69,179		0	207,537	0.04478	0.43284
320.0	484,252	69,179		` O	553,431	0.11940	0.55224
330.0	276,716	276,716		. . 0	553,431	0.11940	0.67164
340.0	345,895	138,358	•	0	484,252	0.10448	0.77612
360.0	207,537	69,179		0	276,716	0.05970	0.83582
370.0	69,179	0		· O · ·	69,179	0.01493	0.85075
380.0	207,537	69,179	۰.	0	276,716	0.05970	0.91045
\$90.0	69,179	69,179		0	138,358	0.02985	0.94030
00.0	0	138,358		0	138,358	0.02985	0.97015
10.0	· 0	69,179		0	69, 179	0.01493	0.98507
20.0	0	69,179	•		<u> </u>	0.01493	1.00000
TAL	3,113,052	1,521,936		0	4,634,988		

Table C-4. --Population estimates by sex and size groups for rock sole from the 1990 cooperative U.S.-Russian bottom trawl survey of the Bering Sea shelf.

Cumulative Length Total Proportion (mm) Males Females Unsexed proportion 50.0 679,709 0.00010 0.00010 679,709 0 0 3,700,551 2,849,614 70.0 182,179 668,758 0.00056 0.00066 0.00402 0.00468 80.0 6,348,070 7,041,578 13,402,390 26,792,038 100,119,867 185,535,800 90.0 52,585,194 13,721,825 33,812,848 0.01502 0.01970 100.0 0.04753 97,637,601 37,257,661 50,640,539 0.02784 110.0 130,051,365 57,221,096 60,415,386 247,687,848 0.03716 0.08470 60,374,575 0.12292 120.0 141,589,242 52,774,635 254,738,452 0.03822 130.0 156,329,730 78,107,873 60,669,714 295, 107, 317 0.04428 0.16719 91,839,396 64,707,257 140.0 153,255,988 309,802,640 0.04648 0.21367 45,829,841 299,577,299 0.04495 150.0 144,690,447 109,057,011 0.25862 123,428,445 120,229,263 117,030,856 127,764,475 265,939,074 256,035,096 160.0 25,479,773 0.03990 0.29852 8,041,358 170.0 0.03841 0.33693 114,999,760 180.0 135,763,805 1,761,213 252,524,778 0.03789 0.37482 190.0 104,784,379 693,877 261,841,302 0.03928 0.41410 156,363,046 101,496,837 200.0 113,805,432 D 215,302,270 0.03230 0.44641 119,055,313 249,669,598 0.03746 0.48387 210.0 130,614,285 0 0.02987 100,553,355 98,564,954 0 199,118,309 0.51374 220.0 230.0 107,409,204 80,166,365 0 187,575,569 0.02814 0.54188 102,019,355 202,745,174 100,725,819 0.03042 0.57230 240.0 0 250.0 97,019,329 114,208,864 0 211,228,193 0.03169 0.60399 260.0 102,578,053 98,213,219 923,481 201,714,753 0.03026 0.63426 129,744,513 101,897,783 0.66908 270.0 461,741 232,104,036 0.03482 153,749,972 280.0 91,550,496 245,300,468 0.03680 0.70588 0 161,789,855 290.0 94,735,994 461,741 256,987,589 0.03856 0.74444 300.0 91,854,467 0 248,881,765 0.03734 0.78178 134,201,985 310.0 92,589,301 0 226,791,286 0.03403 0.81581 191,227,196 0.02869 320.0 93,222,085 98,005,111 0 0.84450 108,592,895 155,865,330 0.02339 330.0 47,272,435 0 0.86788 128,350,303 340.0 31,946,071 95,942,492 461,741 0.01926 0.88714 350.0 9,686,510 127,857,647 923,481 138,467,639 0.02077 0.90791 119,253,500 104,859,144 4,176,586 360.0 114,615,173 461,741 0.01789 0.92581 370.0 5,975,961 98,421,443 461,741 0.01573 0.94154 380.0 1,815,255 86,823,716 693,877 89,332,848 0.01340 0.95494 390.0 ۰Ô 87,036,073 461,741 87,497,814 0.01313 0.96807 36,422,925 36,573,500 150,576 0.97356 400.0 0 0.00549 232,136 0.00961 0.98317 728,130 63,098,807 64,059,073 410.0 51,044,381 51,044,381 0.00766 0.99083 420.0 0 0 26,530,856 27,668,125 675,528 461,741 0.00415 0.99498 430.0 0.99643 9,666,389 0.00145 440.0 0 9,666,389 0 12,333,892 0 12,333,892 0.00185 0.99828 450.0 0 460.0 Ω 0.00084 0.99911 5,567,081 5,567,081 0 470.0 0 5,802,322 0 5,802,322 0.00087 0.99998 109,519 109,519 0.00002 1.00000 0 480.0 0 TOTAL 3,107,963,290 3,124,712,858 432,502,689 6,665,178,837

Standard U.S. Shelf Area

North Shelf Area

60.0	0	·0	92,784	92,784	0.00093	0.00093
70.0	0	· 0	92,167	92,167	0.00092	0.00185
80.0	91,521	91,521	184,951	367,994	0.00367	0.00552
90.0	366,086	.0.	3,375,346	3,741,432	0.03736	0.04289
100.0	1,189,778	823,693	15,804,512	17,817,983	0.17794	0.22082
110.0	732,171	1,921,950	28,882,546	31,536,667	0.31494	0.53576

North Shelf Area

Length (mm)	Males	Females	Unsexed	Total	Proportion	Cumulative proportion
120.0	640 650	2 471 078	24.599.099	27.710.827	0,27673	0.81249
130.0	549,128	1.372.821	11,306,599	13,228,548	0.13211	0.94460
140.0	91.521	366,086	2,537,135	2,994,742	0.02991	0.97450
150.0	0	275,210	717,682	992,892	0.00992	0.98442
160.0	· . 0	Ó	92,784	92,784	0.00093	0.98534
200.0	92, 167	0	0	92, 167	0.00092	0.98626
320.0	0	92,167	0	92,167	0.00092	0.98719
340.0	o o	91.521	··. 0	91,521	0.00091	0,98810
380.0	0	91,521	· 0	.91,521	0.00091	0.98901
390.0	Ó	274,564	O ⁺ ,	274,564	0.00274	0.99176
400.0	0	183,689	0	183,689	0.00183	0.99359
410.0	0	91,521	0	91,521	0.00091	0,99450
420.0	0	274,564	. 0	274,564	0.00274	.0.99725
440.0	. 0	91,521	· · O	91,521	0.00091	0.99816
450.0	0	92,784	. 0	92,784	0.00093	0.99909
490.0	0	91,521	<u> </u>	91,521	0.00091	1.00000
TOTAL	3,753,024	8,697,734	87,685,604	100,136,361		
·	,					·
		Weste	$ extsf{rn}_{i}$ Shelf I	Area		
70.0	, . O	0	174,591	174,591	0.00294	0.00294
80.0	· 0 '	· · O	174,591	174,591	0.00294	0.00588
90.0	· 0	· 10	698,363	698,363	0.01177	0.01765
100.0	0	0	1,396,726	1,396,726	0.02353	0.04118
110.0	64.519	• 0	1,745,908	1,810,427	0.03050	0.07168
120.0	0	0	3,142,634	3,142,634	0.05295	0.12463
130.0	199,033	· O · .	4,190,179	4,389,212	0.07395	0.19857
140.0	392,589	. 392,589	3,142,634	3,927,813	0.06617	0.26475
150.0	64,519	777, 167	2,269,680	3,111,366	0.05242	0.31717
160.0	508,138	239,110	1,396,726	2,143,974	0.03612	0:35329
170.0	747,248	508,138	. 0	1,255,386	0.02115	0.37444
180.0	1,705,832	967,392	· · · O	2,673,224	0.04504	0.41947
190.0	239,110	832,878	· 0	1,071,987	0.01806	0.43753
200.0	1.061.830	483,696	0	1,545,526	0.02604	0.46357
210.0	792.801	483,696	0	1,276,497	0.02151	0.48508
220.0	618,210	832.878	0	1,451,088	0.02445	0.50952
230.0	443.620	872,954	0	1,316,574	0.02218	0.53171
240:0	1.021.754	817.244	0	1.838.998	0.03098	0.56269
250.0	1.246.578	1.840.346	· Ō	3,086,924	0.05201	0.61469
260.0	637,176	946,281	0	1,583,457	0.02668	0.64137
270.0	1.236.421	832,878	. 0	2,069,299	0.03486	0.67623
280.0	2,182,702	1,031,911	0	3,214,613	0.05416	0.73039
290.0	1,293,317	398,066	· 0	1,691,383	0.02850	0.75889
300.0	1.717.971	457,108	. 0	2,175,080	0.03664	0.79553
310.0	696,218	696,218	O	1,392,435	0.02346	0.81899
320.0	876.285	580,669	· 0	1,456,954	0.02455	0.84354
330.0	717.329	690,741	0	1,408,069	0:02372	0.86726
340.0	671.775	1,134,360	· 0	1,806,136	0.03043	0.89769
350.0	193.556	328,071	0	521,627	0.00879	× 0.90648
360.0	64.519	1 263 398	· · O	1,327,917	0.02237	0.92885
370.0	64,519	741,771	0	806,290	0.01358	0.94243
380.0	0	1,518,938	0	1,518,938	0.02559	0.96802
390.0		373,624	. 0	373,624	0.00629	0.97432
400.0	Ō.	373,624	0	373,624	0.00629	0.98061
410.0	õ	134,514	0	134,514	0.00227	0.98288
420.0	Ď.	199,033	0	199.033	0.00335	0.98623
440.0	Ō	373,624	0	373.624	0.00629	0.99253
470.0	· Õ	174,591	0	174.591	0.00294	0.99547
480.0	Ď	134,514	0	134.514	0.00227	0.99773
490.0	0	134,514	0	134,514	0.00227	1.00000
TOTAL	19.457.569	21.566.536	18,332,034	59,356,139	- -	

Ξ.

ζ,

Table C-5. --Population estimates by sex and size groups for <u>Hippoglossoides</u> spp. from the 1990 cooperative U.S.-Russian bottom trawl survey of the Bering Sea shelf.

Standard U.S. Shelf Area

Length (mm)	Males	Females	Unsexed	Total	Proportion	Cumulative proportion
50.0	0	0	4,804,022	4,804,022	0.00385	0.00385
60.0	67,073	0	7,390,802	7,457,876	0.00598	0.00984
70.0	0	. 0	1,108,620	1,108,620	0.00089	0.01073
90.0	276,155	0	0	276, 155	0.00022	0.01095
100.0	1,994,109	1,421,902	· 0	3,416,011	0.00274	0.01369
110.0	2,914,410	1,678,499	0	4,592,909	0.00368	0.01737
120.0	6,157,166	3,332,365	258,832	9,748,362	0.00782	0.02519
130.0	8,683,592	6,203,974	387,980	15,275,545	0.01225	0.03745
140.0	19,336,424	8,684,489	388,248	28,409,161	0.02279	0.06024
150.0	18,170,582	9,004,739	1,163,673	28,338,994	0.02273	0.08297
160.0	18,360,793	11,377,568	1,162,336	30,900,697	0.02479	0.10776
170.0	17,395,065	10,814,694	1,420,632	29,630,392	0.02377	0.13153
180.0	11,394,308	8,567,733	1,808,078	21,770,119	0.01746	0.14899
190.0	14,872,573	13,804,378	774,890	29,451,841	0.02363	0.17262
200.0	13,449,624	7,643,844	0	21,093,469	0.01692	0.18954
210.0	19,966,821	14,183,658	0	34,150,480	0.02740	0.21693
220.0	22,640,965	19,467,198	0	42,108,163	0.03378	0.25071
230.0	27,138,622	27,554,373	0	54,692,995	0.04387	0.29459
240.0	32,195,975	27,683,442	. 0	59,879,417	0.04804	0.34262
250.0	34,003,061	28,447,351	0	62,450,412	0.05010	0.39272
260.0	33,598,357	26,815,598	0	60,413,954	0.04846	0.44118
270.0	26,620,034	19,256,792	0	45,876,826	0.03680	0.47799
280.0	30,894,405	17,117,527	· 0	48,011,932	0.03852	0.51650
290.0	24,964,541	25,530,256	0	50,494,797	0.04051	0.55701
300.0	25,573,911	22,079,453	0	47,653,364	0.03823	0.59524
310.0	27,463,230	16,914,953	0	44,378,183	0.03560	0.63084
320.0	23,294,444	18,808,270	0	42,102,715	0.03377	0.66461
330.0	28,538,803	19,489,601	· 0	48,028,404	0.03853	0.70314
340.0	26,038,833	18,700,188	0	44,739,021	0.03589	0.73903
350.0	30,590,262	19,503,288	0	50,093,550	0.04018	0.77921
360.0	22,866,543	25,691,408	0,	48,557,951	0.03895	0.81817
370.0 ·	13,768,959	30,241,628	0	44,010,587	0.03531	0.85347
380.0	6,903,278	32,663,350	· 0	39,566,628	0.03174	0.88521
390.0	2,641,805	33,731,876	· · O ·	36,373,681	0.02918	0.91439
400.0	971,287	20,427,458	0	21,398,746	0.01717	0.93156
410.0	237,965	18,277,112	0	18,515,077	0.01485	0.94641
420.0	441,435	20,562,388	0	21,003,824	0.01685	0.96326
430.0	485,073	13,680,724	0	14, 165, 797	0.01136	0.97462
440.0	0	14,596,290	. 0	14,596,290	0.01171	0.98633
450.0	0	8,004,792	· 0	8,004,792	0.00642	0.99275
460.0	304,283	4,122,181	0	4,426,464	0.00355	0.99630
470.0	0	3,189,239	0	·3,189,239	0.00256	0.99886
480.0	0	962,577	0	962,577	0.00077	0.99963
490.0	0	455,301	0	455,301	0.00037	1.00000
TOTAL	595,214,765	630,692,457	20,668,113	1,246,575,335	,	н Х

Table C-5. --Continued.

Length (mm)	Males	Females	Unsexed	Total	Proportion	Cumulative
120.0		235 014	0	235 014	0 01163	0 01163
120.0	275 016	235,010		235,016	0.01163	0.07776
140.0	233,010		0	255,010	0.01103	0.02520
190.0	470,032	1 175 080	ő	1 175 080	0.0581/	0 10465
200.0	0	9/0.06/	0	940.064	0.0/451	0.15116
210.0	0	2 585 177	0	2 585 177	0 12701	0.15110
220.0	235 016	1 645 112	Õ	1 880 129	0 00302	0.27709
220.0	235,016	2 585 177	ŏ	2 820 193	0 13053	0.51207
240 0	235 016	2 115 145	ň	2 350 161	0 11628	0.62791
250.0	235 016	2 115 145	. 0	2 350 161	0 11628	0.74419
260.0	233,010	470 032	Ő	470 032	0.02326	0 76744
270 0	ň í	235 016	ñ -	235 016	0.01163	0.77907
280 0	ň	1 175 080	· 0	1 175 080	0 05814	0 83721
200.0	, , , , , , , , , , , , , , , , , , ,	705 048	n i i	705 048	0.03488	0.87209
310 0	235 016	105,040	, õ	235 016	0 01163	0 88372
320.0	233,010	235 016	ň	235 016	0.01163	0.89535
330.0	ů.	235:016	ň	235 016	0.01163	0 90698
340 0	ň	235 016	ň k k n	235 016	0.01163	0 91860
350.0	ň	235 016	,	235 016	0 01163	0 93023
360.0	Ň	235 016	ő	235 (016	0.01163	0.95025
380 0	ň	470 032	ő	470 032	0.02326	0.96512
300 0	ů l	470,032	ň	470 032	0 02326	0 98837
400.0	- 0 ⁻	235.016	ů Č	235.016	0.01163	1,00000
	<u>u</u>					
TOTAL	1,880,129	18,331,253	0	20,211,382	•	

North Shelf Area

Western Shelf Area

						ана стана 1	. •
50.0	519,413	0			519.413	0.00131	0.00131
60.0	2.899.653	0		0	2.899.653	0.00733	0.00864
70.0	1,156,270	636.857	· · ·	·· õ	1,793,127	0.00453	0.01317
80.0	6,799,251	636,857	· · ·	<u>`</u> 0	7,436,108	0.01879	0.03196
90.0	3.312.374	1.156.270		0	4,468,644	0.01129	0.04325
00.0	1.371.518	636,857		ō	2,008,376	0.00507	0.04833
10.0	1,156,270	770,390	÷ .	· 0	1,926,660	0.00487	0.05319
20.0	4.351.670	519,413	· · · ·	0	4.871.083	0.01231	0.06550
30.0	11.848.483	2,117,691		0	13,966,174	0.03529	0.10079
40.0	13,210,694	6:419.509		0	19,630,203	0.04960	0.15040
50.0	13,387,588	5,597,236		0	18,984,825	0.04797	0.19837
60.0	14.862.879	8,791,142		0	23,654,021	0.05977	0.25814
70.0	12,877,143	22,864,171		Ö .	35,741,314	0.09031	0.34845
80.0	4,448,362	24,344,132	· ·	0	28,792,494	0.07275	0.42120
90.0	8,918,392	21,051,944		0	29,970,336	0.07573	0.49693
00.00	2,879,232	26,963,755		0	29,842,987	0.07541	0.57234
10.0	5,141,365	24,641,779	. '	0	29,783,145	0.07526	0.64760
20.0	3,382,410	23,358,108	4	0.	26,740,518	0.06757	0.71517
30.0	1,822,399	22,463,339	· · · · ·	0	24,285,738	0.06137	0.77653
40.0	613,954	17,086,768		0	17,700,722	0.04473	0.82126
50.0 -	1,094,375	15,019,510		0	16,113,885	0.04072	0.86198
50.0	1,473,618 -	8,223,051		0.	9,696,669	0.02450	0.88648
70.0	598,681	6,703,264	-	0	7,301,945	0.01845	0.90493
80.0	813,929	3,365,562		0	4,179,491	0.01056	0.91549
90.0	133,533	3,251,115		0	3,384,647	0.00855	0.92404
0.00	0	4,304,381		0	4,304,381	0.01088	0.93492
10.0	0	3,879,997		0	3,879,997	0.00980	0.94472
		-					· ·
· ·						. *	

Table C-5. --Continued.

Length (mm)	Males	Females	Unsexed	Total	Proportion	Cumulative proportion
320.0	. 0	2,998,547	0	2,998,547	0.00758	0.95230
330.0	· 0	3,216,463	0	3,216,463	0.00813	0.96043
340.0	0	2,960,443	0	2,960,443	0.00748	0,96791
350.0	- 0	5,453,845	0	5,453,845	0.01378	0.98169
360.0	0	3,271,603	· 0	3,271,603	0.00827	0,98995
370.0	0	1,246,622	0	1,246,622	0.00315	0.99310
380.0	0	1,153,675	0	1,153,675	0.00292	0.99602
390.0	. 0	215,249	0	215,249	0.00054	0.99656
400.0	0	1.047.461	· 0	1,047,461	0.00265	0.99921
420.0	0	312,800	0	312,800	0.00079	1.00000
TOTAL	119,073,456	276,679,806	0	395,753,262		

Western Shelf Area

Table C-6. --Population estimates by sex and size groups for Alaska plaice from the 1990 cooperative U.S.-Russian bottom trawl survey of the Bering Sea shelf.

Length (mm)	Males	Females	Unsexed	· · · · · ·]	lotal	Proportion	Cumulative
90.0	369,335	53,246) 4	22,581	0.00041	0.0004
100.0	369, 335	0) 3	69,335	0.00035	0.00076
150.0	1,108,006	· 0	0	i , 1 , 1	08,006	0.00106	0.0018
160.0	845,162	53,246) 8 8	98,408	0.00086	0.00269
170.0	475,827	266,229	() 7	42,056	0:00071	0,00340
180.0	1,097,680	1,364,661		2,4	62,341	0.00237	0.00577
190.0	1,554,458	1,201,299	<u>)</u>) 2,7	55,758	0.00265	0.00842
200.0	2,918,901	4,321,708	. () 7,2	40,608	0.00696	0.01538
210.0	3,907,271	3,316,524	C	7,2	23,796	0.00694	0.02232
220.0	3,810,410	3,329,981	C) 7,1	40,391	0.00686	0.02918
230.0	7.106.344	5,287,591	.) (12,3	93,935	0.01191	0.04109
240_0	4,927,180	6,606,304	(11,5	33,483	0.01108	0.05218
250 0	7 544 917	4 240 982:	. ' 0	11 [.] 7	85.899	0.01133	0.06351
260.0	6 690 249	8,708,542	· ·	15.3	98.792	0.01480	0.0783
270.0	11 610 713	5.478.014		17.0	88.728	0.01642	0.0947
280.0	11 357 204	6.508.862	, c	17.8	66,066	0.01717	0.1119
200.0	15 307 419	10:729 739	, (26.0	37,158	0.02502	0.1369
300.0	76.710 430	9 543 688		36.2	63 127	0.03485	0.1717
310.0	40 064 729	15 060 003	. C	55 1	24 732	0.05298	0.2247
320.0	40,004,727	13 445 049		54 3	30 000	0:05222	0.2769
320.0	50 /01 152	15 028 770		66 3	20 022	0:05222	0 3407
330.0	47 555 557	20 /36 70/	- 14 - L	87 0	07 257	0.08457	0 4253
340.0	71 502 047	15 243 103		86.7	XA 050	0.00431	0.5086
350.0	59 390 347	22 822 8/0		81 1	00,000	0.07795	0.5866
380.0	50,200,301	14 (00 270		·	03,207	0 06602	0.5000
370.0	32,202,134	10,490,237		5/7	76,71J	0.00002	0.0020
380.0	32,419,077	22,333,420	0	71 1	24,303 AB 31A	0.03203	0.7052
390.0	12,090,578	18,411,052		31,1	00,210	0.02990	0.7331
400.0	5,452,585	24,229,714		21,0	02,297	0.02001	0.7017
410.0	4,992,687	24,000,931		27,3	10 205	0.02641	10,7902
420.0	381,489	35,428,718		30,0	10,205	0.03442	0.0240
430.0	632,099	30,822,710	U U	51,4	54,810 75 555	0.03023	0.8548
440.0	406,888	54,965,364		37,3	72,202	0.03400	0.0000
450.0	610,141	50,765,164	U	51,5	75,304	0.03016	0,9190
460.0	· 0	25,107,222		25,1	07,222	0.02413	0.9431
470.0	376,429	20,630,554	0	21,0	06,983	0.02019	0.9633
480.0	385,131	12,543,249	0	12,9	28,380	0.01243	0.9757
490.0	、 O	8,986,977	0	8,9	86,977	0.00864	0.9843
500.0	. · · · · O	7,085,973	. 0	7,0	85,973	0.00681	0.9911
510.0	· 0	3,740,249	. 0	3,7	40,249	0.00359	0.9947
520.0	0	1,979,540	0	1,9	79,540	0.00190	0.9966
530.0	0	909,649	, O	90	09,649	0.00087	0.9975
540.0	. 0	1,060,984	- 0	1,0	60,984	0.00102	0.9985
550.0	. 0	571,714	0	- 51	71,714	0.00055	0.9991
560.0	0	450,019	0	4	50,019	0.00043	0.9995
580.0	<u>,</u> 0	225,009	0	22	25,009 👘	0.00022	0.9997
600.0	0	225,009	<u> </u>	22	25,009	0.00022	1.0000
TOTAL	544 946 357	495 519 150		1 040 4	65 507	•	

Standard U.S. Shelf Area

North	Shelf	Area
-------	-------	------

Length (mm)	Males	Females	Unsexed	Total	Proportion	Cumulative proportion
			323 384		0 00179	0.00179
100.0	0	ů,	2 263 700	2 263 200	0.0175/	0.001/3/
110 0	ŏ	ů	5 982 636	5 982 636	0.03315	0.01434
120 0	ů,	ů	4 489 193	4 480 003	0.000010	0.073/8
130.0	0	71 714	4,007,075	4,00,075	0.02360	0.07340
140.0	0		1 203 543	1 703 543	0.02309	0.09717
150.0	131 205	ő	485 079	A16 28/	0.003/2	0.10774
160.0	288 880	702 347	303,077	1 31/ 413	0.00342	0.10770
170 0	353 470	551 756	525,500	005 226	0.00727	0 12004
180 0	1 308 50%	888 504	, õ	2 287 000	0.00002	0.12000
100.0	1,370,304	1 203 770	0	2,207,009	0.01267	0.152/3
200.0	1,077,233	2 797 005	0	2, 171, 704 / 274 900	0.01709	0.13042
200.0	1,073,074	2,383,003	0.	4,2/0,077	0.02570	0.1/412
210.0	1,023,004	1,104,014	0	2,120,410	0.01512	0.10924
220.0	1,607,038	2,104,329		4,001,007	0.02245	0.21109
250.0	1,964,620	2,221,081	U	4,205,701	0.02557	0.23500
240.0	948,707	2,000,903	· - 0	3,033,069	0.01062	0.25182
250.0	1,987,309	1,519,301	U	. 3,506,610	0.01945	0.2/126
260.0	778,495	1,327,843	U	2,106,555	0.01167	0.28293
270.0	1,663,940	1,954,055	o	. 3,617,995	0.02005	0.30298
280.0	1,642,543	- 645,398	U	2,287,941	0.01268	0.31566
290.0	2,823,305	1,893,382	U	4,/16,68/	0.02614	0.34180
300.0	4,420,088	2,255,965	0	6,676,053	0.03700	0.37879
310.0	6,115,749	1,442,384	0	7,558,134	0.04189	0.42068
320.0	7,095,998	1,862,871	0	8,958,869	0.04965	0.47033
330.0	4,290,674	3,765,743	0	8,056,417	0.04465	0.51497
340.0	4,448,961	2,676,544	0	7,125,505	0.03949	0.55446
350.0	4,021,780	3,724,481	0	7,746,261	0.04293	0.59739
360.0	3,083,595	5,242,685	0	8,326,280	0.04614	0.64353
370.0	1,836,958	3,784,330	0	5,621,288	0.03115	0.67468
380.0	983,109	4,626,718	0	5,609,827	0.03109	0.70577
390.0	832,348	4,185,925)O	5,018,273	0.02781	0.73358
400.0	203,102	4,411,579	0	4,614,681	0.02557	0.75915
410.0	. 0	6,812,537	0	6,812,537	0.03775	0.79691
420.0	0	6,261,522	0	6,261,522	0.03470	0.83161
430.0	. 0	4,253,412	0	4,253,412	0.02357	0.85518
440.0	0	4,629,625	0	4,629,625	0.02566	0.88083
450.0	· 0	4,381,271	. 0	4,381,271	0.02428	0.90511
460.0	· 0	4,889,005	· 0	4,889,005	0.02709	0.93221
470.0	· 0	4,353,633	0	4,353,633	0.02413	0.95633
480.0	0	2,793,825	0	2,793,825	0.01548	0.97182
490.0	0	1,708,609	0	1,708,609	0.00947	0.98129
500.0	0	1,792,707	0	1,792,707	0.00993	0.99122
510.0	0	943,130	· 0	943,130	0.00523	0.99645
520.0	. 0	438,029	Ō	438,029	0.00243	0.99887
540.0	0	203,102	0	203,102	0.00113	1.00000
TOTAL	58 637 368	102 246 655	19 564 838	180 448 861		

Table C-6. --Continued.

Western	Shelf	Area	

(mm)	Males	Females	Unsexed	Total	Proportion	proportion
450.0		(78, 750		1 419 1/1	0.02/42	0.02/42
150.0	489,892	620,250	U	1,010,141	0.02402	0.02402
160.0	628,250	028,200	U	1,230,499	0.01912	0.04374
170.0	628,250	561,642	U U	989,892	0.01506	0.03860
180.0	942,574	361,642	U	1,304,010	0.01984	0.07865
190.0	675,767	675,767	0	1,351,534	0.02057	0.09921
200.0	1,256,499	361,642	0 .	1,618,141	0.02462	0.12383
210.0	675,767	628,250	. 0	1,304,016	0.01984	0.14368
220.0	361,642	816,212	0	1,177,854	0.01792	0.16160
230.0	314,125	314,125	0.	628,250	0.00956	0.17116
240.0	. 0	95,035	0	95,035	0.00145	0.17260
250.0	314,125	0	0	. 314,125	0.00478	0.17738
260.0	314,125	989,892	0	1,304,016	0.01984	0.19723
270.0	1,130,336	47,517	0	1,177,854	0.01792	0.21515
280.0	690,049	409,160	0	1,099,209	0.01673	0.23187
290.0	690 049	1,201,906	0	1,891,955	0.02879	0.26066
300.0	2,089,100	597,122	0	2.686.222	0.04087	0.30154
310.0	2.425.170	982,816	0.	3,407,986	0.05186	0.35339
320 0	2 206 080	259 532	Ō	2.465.611	0.03752	0.39091
330.0	1 553 778	1 577 830	Ő	3 131 609	0.04765	0.43856
340 0	1 401 070	1 451 668	ň	2 943 646	0 04479	0.48335
350.0	2 211 170	1 587 013	ů ř	3 708 102	0.04419	0 54115
340.0	2 //9 475	466 58/		3 115 210	0.0/7/0	0.58855
370.0	2,448,000	1 777 149		7 472 175	0.05527	0.50055
790.0	1 027 097	1,000,000	0	7 045 501	0.0/517	0 4880/
300.0	7,925,005	1,042,300	0	2,703,371	0.04313	0.00074
- 390.0	3,303,181	1,145,205	U	4,440,307	0.00/09	0.70003
400.0	000,584	1,862,772	U	2,349,330	0.05879	0.79342
410.0	1,506,261	549,604	U	2,055,865	0.03128	0.826/1
420.0	792,746	666,584	0	1,459,330	0.02221	0.84891
430.0	502,087	714,101	0	1,216,188	0.01851	0.86742
440.0	314,125	235,480	D	549,604	0.00836	0.87578
450.0	187,962	690,049	0	878,011	0.01336	0.88914
460.0	314,125	47,517	. 0 '	361,642	0.00550	0.89464
470.0	0	887,781	. 0	887,781	0.01351	0.90815
480.0	0	878,011	0	878,011	0.01336	0.92151
490.0	0·	.478,622	· · · O	478,622	0.00728	0.92879
500.0	. 0	972,112	0	972,112	0.01479	0.94359
510.0	0	643,118	· · · O	643,118	0.00979	0.95337
520.0	0	212,014	0	212,014	0.00323	0.95660
530.0	. 0	564,473	Ŭ.	564,473	0.00859	0.96519
540.0	. D	892,880	ů.	892 880	0.01359	0.97877
560.0	- n	164 407	.	164 407	0 00250	0.98128
570.0	. 0	666 584	· 0 · ·	666 584	0 01014	0 99142
400 0		543 997		563 887	0.00858	1 00000
000.0	<u> </u>		<u> </u>		. 0.00000	
TOTAL	75 0// 774	20 972 971	·	(F 740 4FD		

Table C-7. --Population estimates by sex and size groups for <u>Atheresthes</u> spp. from the 1990 cooperative U.S.-Russian bottom trawl survey of the Bering Sea shelf.

Length (mm)	Males	Females	Unsexed	Total	Proportion	Cumulative proportion
	- 52 091	52 091		10/ 197		0.00017
120 0	52,091	12,091	363 005	363 005	0 00059	0.00075
130.0	0	0	363 005	363:005	0.00039	0.00013/
140.0	121 226	115 303	227 860		0.00035	0.00134
150.0	2 407 050	831 511	1 470 881	5 118 /51	0.00075	0.00209
160.0	1 008 7/.0	1 663 512	1 105 777	6 768 038	0.00760	0.0180/
170 0	1 603 204	1 995 900	666 818	4 266 012	0 00688	0 02/02
180.0	2 149 128	3 224 642	759 532	6 133 302	0.00000	0.03482
190.0	1 675 674	2 758 905	0	4,434,579	0-00716	0.04198
200.0	3 619 411	3,263,077	Õ	6.882.487	0.01111	0.05308
210.0	1.592.135	3,152,590	0	4,744,725	0.00766	0.06074
220.0	2.344.126	3.820.497	, D	6,164,623	0,00995	0.07068
230.0	2.826.110	6.382.629	O	9,208,739	0.01486	0.08554
240.0	3.612.155	7.855.978	å	11,468,134	0.01850	0.10405
250.0	7.298.546	7,794,774	ů	15.093.320	0.02435	0.12840
260.0	15 137 385	15.293.469	ů 0	30.430 854	0.04910	0.17750
270.0	17.273.532	20.981.482	Ŏ	38,255,013	0.06173	0.23922
280.0	19.591.624	23,255,412	Õ	42.847.036	0.06913	0.30836
290.0	19.653.015	20.307.858	, O	39,960,873	0.06448	0.37284
300.0	14,673,339	24,796,864	Ō	39,470,203	0.06369	0.43652
310.0	14,138,585	24,383,334	. 0	38,521,919	0.06216	0.49868
320.0	14,208,949	20,508,616	0	34,717,565	0.05602	0.55470
330.0	11,957,581	19,973,663	0	31,931,245	0.05152	0.60622
340.0	8,354,601	28,057,981	0.	36,412,583	0.05875	0.66497
350.0	7,788,899	21,959,348	. 0	.29,748,247	0.04800	0.71297
360.0	7,341,193	18,280,482	0	25,621,675	0.04134	0.75431
370.0	5,352,843	10,684,853	0	16,037,696	0.02588	0.78019
380.0	4,378,890	8,605,064	0	12,983,953	0.02095	0.80114
390.0	5,001,328	6,920,326	0	11,921,655	0.01924	0.82037
400.0	7,853,955	10,795,052	0	18,649,007	0.03009	0.85046
410.0	2,026,816	7,874,771	0	9,901,588	0.01598	0.86644
420.0	2,030,438	9,623,681	0	11,654,119	0.01880	0.88524
430.0	1,319,208	13,335,013	0	14,654,222	0.02364	0.90889
440.0	500,076	9,685,025	0	10,185,101	0.01643	0.92532
450.0	72,776	10,653,033	0	10,725,809	0.01731	0.94263
460.0	161,934	6,032,839	0	6,194,774	0.01000	0.95262
470.0	186,517	4,452,238	_ · O	4,638,755	0.00748	0.96011
480.0	115,303	3,699,492	0	3,814,795	0.00616	0.96626
490.0	0	3,264,069	0	3,264,069	0.00527	0.97153
500.0	. 0	1,188,253	0	1,188,253	0.00192	0.97345
510.0	, 0	1,011,222	0	1,011,222	0.00163	0.97508
520.0	706,517	1,218,936	0	1,925,453	0.00311	0.97819
530.0	74,158	2,868,401	0	2,942,560	0.00475	0.98293
540.0	0	2,677,822	0	2,677,822	0.00432	0.98726
550.0	0	1,183,309	0	1,183,309	0.00191	0.98916
560.0	0	1,771,411	0 -	1,771,411	0.00286	0.99202
570.0	161,934	669,117	0	831,052	0.00134	0.99336
580.0	· D ·	710,109	D	710,109	0.00115	0.99451
590.0	Q	583,050	, O	583,050	0.00094	0.99545
600.0	0	702,707	0	702,707	0.00113	0.99658
610.0	0	396,260	0	396,260	0.00064	0.99722
620.0	0	279,645	· D	279,645	0.00045	0.99767
630.0	. 0	413,269	0	413,269	0.00067	0.99834
640.0	0	60,267	0	60,267	0.00010	0.99844
650.0	0	547,807	0	547,807	0.00088	0.99932
670.0	0	209,997	0	209,997	0.00034	0.99966
680.0	0	209,997	0	209,997	0.00034	1.00000
Total	211,561,099	403,036,954	5,165,878	619,763,931		

Standard U.S. Shelf Area

,

Table C-8. --Population estimates by sex and size group-for. Pacific halibut from the 1990 cooperative U.S.-Russian bottom trawl survey of the Bering. Sea shelf.

ength (mm)	Males	Females	Unsexed	Total	Proportion	Cumulative proportion
180.0	0	· 0	280 797	280.797	0.00325	0.00325
100.0	ň	Ő	534.620	534,620	0.00618	0.00942
200.0	.0	0	080 785	. 989 785	0-01144	0.02086
210 0	0	0	80/ /82	804 482	0 01034	0 03120
270.0	0	· 0	1 797 411	1 397 611	0.0160/	0.06726
	· · U		1,307,011	471 / 74	0.00774	0.05500
230.0	U	· U	571,470	2 202 (20	0.00775	0.03300
240,0	· · · · · ·	U	2,392,430	2,392,430	0.02765	0.00203
250.0	U	· . U	3,516,682	3,510,082	0.04064	0.12329
260.0	0,	0	5,531,635	5,531,635	0.06393	0.18/22
270, 0	Q.	. 0	5,062,490	5,062,490	0.05851	0.24575
280.0	· O ,	. 0	5,789,624	5,789,624	0.06691	0.31265
290.0	. O	· 0	6,813,533	6,813,533	0.07875	0.39139
300.0	0	• 0	6,278,197	6,278,197	0.07256	0.46395
310.0	, O .	0	4,418,298	4,418,298	0.05106	0.51502
320.0	0 -	· 0	6,070,396	6,070,396	0.07016	0.58518
330.0	. 0	Û	2,289,177	2,289,177	0.02646	0.61163
340.0	Ō	D	2.672.406	2,672,406	0.03089	0.64252
350.0	ň	·	1.656.264	1.656.264	0.01914	0.66166
360.0	ň		601 068	601 068	0 00695	0.66861
370 0	ň	0	/26 221	426 221	0 00403	0 67353
380.0		· · · · ·	/420,221	420,221	0.00536	0 67890
300.0		. 0	403,737	453 780	0.0075/	0.01070
590.0	U N	U.	720,042	778,012	0.00754	0.00044
+00.0	U	U	728,012	728,012	0.00041	0.09403
410.0	. 0	. 0	740,094	740,094	0.00855	0.70340
20.0	0	0	338,491	338,491	0.00391	0.70732
430.0	0 *	0	1,422,378	1,422,378	0.01644	0.72375
440.0	· 0.	- 1 - 1 - O	1,553,866	1,553,866	0.01796	0.74171
50.0	0	0	987,369	987,369	0.01141	0.75312
460.0	0	0	315,035	315,035	0.00364	0.75677
70.0	0	0	471,134	471,134	0.00545	0.76221
480.0	-0.	. 0	266,219	266,219	0.00308	0.76529
490.0	0	0	881,453	881.453	0.01019	0.77548
500 0	0	Ō	718.050	718.050	0.00830	0.78377
510 0	, ,	ů N	597 674	597 674	0.00691	0.79068
570.0	. 0		800 077	800 072	0.010/0	0 80108
520.0	0	. 0	549 / 77	549 / 33	0.01040	0.80765
550.0	. U	0	200,433		0.00057	0.00705
540.0	· U		222,013	222,013	0.00257	0.01022
50.0	U	· U	237,133	237,133	0.00274	0.81296
560.0	0	. 0	200,500	200,500	0.00232	0.81528
570.0	0	0	238,882	238,882	0.00276	0.81804
580.0 1	0	. 0	475,929	475,929	0.00550	0.82354
590.0	0	· · · O		182,208	0.00211	0.82564
500.0	, 0 ,	. 0	1,332,085	1,332,085	0.01540	0.84104
510.0	0		1,989,163	1,989,163	0.02299	0.86403
520.0	Ō	0	1.602.088	1.602.088	0.01852	0.88254
30 0	. Ö	, n	963 430	963 430	0_01113	0 89368
	n	0 0	5/2 70/	542 704	0 00627	0 80005
50.0	Ň	· · · · · · ·	750 204	750 704		0 00977
			270 475	470 170	0.00010	0.700/3
	V	Ű	0/0,133	0/0,133	0.00/04	10.010
70.0	0	0	591,163	591,165	0.00685	0.92340
80.0	0	, 0	550,329	550,329	0.00636	0.92976
590.0	· 0	- , O ,	512,350	512,350	0.00592	0.93568
700.0	0 - 1	· . 0	306,761	306,761	0.00355	0.93923
710.0	0	0	309,466	309,466	0.00358	0.94280
720.0		0	179,998	179,998	0.00208	0.94488
730.0	Ō	0	528,942	528.942	0.00611	0.95100
	.	•		,		

Standard U.S. Shelf Area

Table C-8. --Continued.

Length (mm)	Males	Females	Unsexèd	Total	Proportion	Cumulative proportion
740.0	· 0	· 0	177,015	177,015	0.00205	0.95304
750.0) O	- 0	329,743	329,743	0.00381	0.95685
760.0	0	0	369,763	369,763	0.00427	0.96113
770.0	0	0	161,802	161,802	0.00187	0.96300
780.0	. 0	0	218,219	218,219	0.00252	0.96552
790.0	0	0	159,298	159,298	0.00184	0.96736
800.0	0	0	330,499	330,499	0.00382	0.97118
810.0	0	0	199,780	1 99 ,780	0.00231	0.97349
820.0	, O	0	269,380	269,380	0.00311	.0.97660
830.0	0	0	118,762	118,762	0.00137	0.97797
840.0	· 0	0	40,802	40,802	0.00047	0.97845
850.0	0	0	142,792	142,792	0.00165	0.98010
880.0	0	0	58,093	58,093	0.00067	0.98077
890.0	0	D	51,746	51,746	0.00060	0.98137
930.0	0	0	133,640	133,640	0.00154	0.98291
950.0	0	. 0	184,016	184,016	0.00213	0.98504
970.0	0	0	43,040	43,040	0.00050	0.98553
1000.0	0	0	42,011	42,011	0.00049	0.98602
1010.0	0	. 0	40,540	40,540	0.00047	0.98649
1040.0	· U	U	51,059	51,059	0.00059	0.98708
1050.0	0.		101,528	101,528	0.00117	0.98825
1070.0	U O	0	40,995	40,995	0.00047	0.98873
1100.0	0	0	207,394	207,394	0.00509	0.99182
170.0	. 0	U	51,059	51,059	0.00059	0.99241
1200.0	Ý U	U	153,640	155,640	0.00154	0.99395
1250.0	U .	0	200,009	200,007	0.00308	0.99703
1200.0			41,324	41,224	0.00048	0.99731
1/20.0	. 0	0	40,002	40,002	0.00047	0.99796
1420.0	· · · · ·	0	5/ 8/1	5/ 9/1	0.00044	0.99042
1530.0	· .	. 0	40 802	/0.802	0.00065	0.99903
1720.0		0	40,802	40,002	0.00047	1 00000
		0	41,524	41,324	0.00048	1.00000
TOTAL	0	0	86,524,466	86,524,466	-	
-	·		· · · ·			
		Nor	th Shelf Are	a		
	· · · ·	1				
250.0	0	0	70,474	70,474	0.07987	0.07987
270.0	0	. O	313,824	313,824	0.35567	0.43555
320.0	0	0	378,292	378,292	0.42874	0.86429
410.0	e e O 1	0	70,013	70,013	0.07935	0.94364
460.0	<u> </u>	0	49,731	49.731	0.05636	1.00000
TOTAL	. 0	0	882,334	882,334		

Standard U.S. Shelf Area

TOTAL 0

175

Table C-8. --Continued.

Lengt (mm)	' h	Males			Females				Unsexed	•	Total	Proportion	Cumulative proportion		
300	.0		0			0	· · .		56.801		56 801	0.03005	0 03005		
350	.0		Ō.			ō			37.662		37,662	0.01993	0:04998		
380	.0	•	Ō		:	Ō			141.011		141.011	0.07460	0.12458		
390	:0	1	Ō			Ō			37.662		37,662	0.01993	0.14451		
410	.0	,	Ō			Ō	1		87.977		87.977	0.04655	0,19105		
420	.0		ō `			Ō			47.248		47,248	0.02500	0.21605		
460	.0		Ó Í	N	5 × .	Ď			39,430		39,430	0.02086	0.23691		
500	.0	1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 -	Ō			Ō			46.603		46.603	0.02466	0 26157		
520	.0	(0			Ō			40.817	·. ·	40 817	0.02159	0 28316		
530	.0		0			. 0			40,817		40.817	0.02159	0.30476		
550	.0 :	(0			0			40.817	2	40.817	0.02159	0.32635		
560	.0		Ď			Ō			81,634		81.634	0.04319	0.36954		
570	.0	(0 Í	•		٠Ó			83,493	. •	83.493	0.04417	0 41372		
590	.0	(Ō		•	Ó			47.095	· .	47.095	0.02492	0.43863		
600	.0	(0			0			82.336		82.336	0.04356	0.48219		
610	.0	(0.	4.1		Ō		12.5	81,411		81,411	0.04307	0.52527		
630	.0	(0			0	. 1		40,817		40.817	0.02159	0.54686		
640	.0		0			0			36,665		36,665	0.01940	0.56626		
650	.0	·	5			. 0			34,808		34,808	0.01842	0.58467		
660	.0	C) '			. 0			77,482		77,482	0.04099	0.62567		
670	.0)			0			40.817		40,817	.0.02159	0.64726		
680	.0	C)	•		0			40.817		40.817	0.02159	0.66886		
700	.0	C	י נ		÷.	0	1		33,265		33,265	0.01760	0.68646		
720	.0	· ()			· O			49.070		49.070	0.02596	0.71242		
730	.0). · '			0			73.330		73.330	0.03880	0 75122		
770	.0	Ċ)		•	Ō.			40.411		40,411	0.02138	0.77260		
810	.0	c)			, 0			36,665		36,665	0.01940	0.79199		
840	.0	Ċ	5			Ó	r		40,817		40,817	0.02159	0.81359		
-870	.0) ¹			0	•		43,423		43,423	0.02297	0.83656		
880	.0	. C)			0			47,160		47,160	0.02495	0.86151		
930	.0	· . C) .			.0			76.857		76.857	0.04066	0.90218		
1020.	.0	C) .			Ō	· .		70,005		70.005	0.03704	0 93921		
1090.	, O [.]	- O).			0			36,665		36.665	0.01940	0.95861		
1180	0	. 0)		· .	0			43,423		43,423	0.02297	0.98158		
.1720.	.0	0	<u>í</u>			0		-	34,808		34,808	0.01842	1.00000		
TOTAL	•.	. 0	ł	• •	. '	Ó		· *	1,890,119		1,890,119				

Western Shelf Area

THIS PAGE INTENTIONALLY LEFT BLANK

APPENDIX D

Age-Length Keys for Walleye Pollock

Appendix D presents age length keys forwalleye pollock by sex and both sexes combined from the western shelf area collected during the 1990 cooperative U.S.-Russian bottom trawl survey of the Bering Sea shelf. Lengths are in millimeters. Asterisks indicated fish lengths for which ages have been interpolated.

List of Tables

Table.

<u>Paqe</u>

Table D-1.--Age-length keys for walleye pollock from age and length data collected during the 1990 cooperative U.S.-Russian bottom trawl survey of the Bering Sea shelf.

MALE KEY

~

_																									-						
LEN	- AVG	STD.	FREQ-	AGE	CIN	YEAR	S)		-				_		· · ·			-													
° GTH	AGE	DEV.	UENCY	Ō	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	10	20	21	22	23	24	25	26+	
												-		•-	••	•-		••					.,			**			5	201	
200	2.00	0.00	7	0	0	7	0	0	0	0	0	0	0	0	0	0	0	Ω	0	n	Δ	٥	٥	0	0	۵	n	0	n	0	
210	2.00	0.00	3	ŏ	Ō	3	ñ	ñ	ň	Ō	ŏ	ň	ŏ	ŏ	ň	ň	Ň	ň	õ	ň	ň	ñ	ň	ň	ň	0	0	0	0	Ň	·
220	2.00	0.00	3	ŏ	ō	ž	ň	ŏ	ŏ	ō	ň	ň	ň	ň	ň	ň	ň	ŏ	ň	ň	ň	ň	ň	ň	ň	0	ň	0		0	
230	2 20	0 45	5	ň	ň	Ĩ.	ĭ	ň	ň	ň	ň	ň	ň	ň	ň	ň	ň	ň	ň	ñ	0	0	~	ă	å	ů N	0	0			
240	2 40	0.55	Ś	ŏ	ň	ž	2	ň	ň	ň	ň	ň	ň	ň	ň	ň	ñ	ň	0	0 0	Ň	0		0	0	0		0	U O	0	
250	2 20	0.20	7	ň	. ŏ	5	2	ň	ň	Ň	ň	ň	ň	ň	Ň	0	0	0	0		Ň	0	0	~	0	0	· U	0	U	U	
270	3 00	0.47	2	0	· 0	, 1	2	.0	ň	ň	ň	ň	Ň	0	Ň	0	0	0	0	0	0	Ŭ	Ű	Ű	v v	U	U	U	U	0	
200	3.00	0.00	5	Ň	۰ ۸	Ň	· ·	4	Ň	Ň	ő	~	0	0	0	0	0	0	0	0	U	U O	0	0	0	U	U	U	U	U	
200	3.20	0.47	, j	0	0	ň	. 4	0	0	ň	0	Ň	0	0	0	Ň	0	0	0	U	U	Ű	U	U	U	0	0	U	0	0	
270	7 77	0.00	· · ·	0	0	Ň	4 7	1	Ň	0	0	ň	~	0	Ň		0	v o	0	Ű	0	U	U	0	U	U	0	U	0	U	
210	0.1.77	0.30		0	~	ŏ	<i>2</i>		0	0	0	Ň	· U	0	0	0	U	U	Ŭ,	U	Ů	U	U	U,	U	U	U	0	0	0	
310	3.20	0.47		. 0		ŏ	-		0	0	0		0	0	· ŏ		U	0	0	Ű	U	U	U	U	U	U	U	U	U	0	
320	5.2.2	0.30		, v		Ň	2		0	0	0	ŭ	Ň	0	0	0	U	0	Ŭ	U	U .	U	U	U	U	U	0	U	0	0	
1020	5 00	0.00	. 1	0		0	2	.1	1	0	<u> </u>	~	0	· · U·	0	0	0	0	0	U	Ů	U	U	0	U	. 0	U	U	0	0	•
340		0.00	· · ·	0	Ň	0	0	1		0	~	~	0	· U	0	0	U	U A	Ŭ	U	Ű	Ű	U O	Ű	U	U	U	0	U	0	
300	5 00	1 00			0	0	.0				Ű	0	U A	U	U	U	U	U	U	0	U	U	0	U	Ū	Q	0	0	Q	0	
200		0.00		0	0	0	0	7			0	Ű	U	Ű	0	U	0	U	U	U	U	U	U	0	-0	0	0	0	0	0	
300	4.00 F 00	0.00		0	0		0	2	2	<u> </u>	Ű	U	Ŭ,	U	U	U	U	U	U	Û	U	0	0	0	0	0	0	0	0	· 0	
290	5.00	0.00		0	0	0	0	Ű	2	•	v		U A	Ű	U	U N	U	U	U	U	U	U	0	U	U	0	· 0	0	0	0	
400	4 77	1 22		0	0	0	0	0	2		0	2	0	0	0	U O	U • 0	0	0	Ű	U	0	U	0	U	0	0	0	0	0	
410	4 20	1.3/	10	0	0	0	0	Ű	2	2	7	4	0	0	U	0	U	U	U N	U	U	U	U	U	· U	0	0	· 0	0	0	
420	7 50	1.03		0	0	0	U	U A	2		2	1	0	U	0	U	Ű	U	U	U	0	U	0	U	U	្ប	0	0	0	0	
430	1,30	1.00	4 E	0	0	0	U	U			0	2	0	U	U	U	U	U	U	U	U	0	0	0	0	0	0	0	0	0	
440	0.00	1.00		0	0	0	0	0		2	1	7	1	0	U	0	U	U	U	, U	U	U	0	U	0	0	0	0	0	0	
450	7.13	1.71		U	U	0	U	U	v v	<u>,</u>	2	2	U	U	U.	1	U	U	U	U	Ű	U	0	U .	0	0	0	. 0	0	0	
400	10.00	2.34		0	0	U	0	U	0	2	U		0	U O	U		U	0	U	0	U	0	0	0	0	0	0	0	0	0	
470	0.75	4 75	. 2	U	0	Ů	U	U	0	0	U I	2	U	U	0			U	U	0	0	0	0	0	0	0	-0	0	0	0	
400	0.13	1.73		U	U	U A	0	U O	Ű	0		2	U	U	1	1	U	U	U	U	0	U	0	0	0	0	0	0	0	0	
490	0.77	1.07		0	0	U A	U	U	0	1	0	,	1	U	U	U.	U	U	U	U	0	0	0	0	0	0.	0	0	0	0	
500	0.33	1.9/		· U	U	0	U	U	0		U	4	U	Ų	U	1	U	U	0	0	0	0	0	0	0	0	0	0	0	0	
210	9.00	2.00	· •	U	0	U A	U	U	Ű	0	U	2	U	U	U		0	U	0	0	0	0	0	0	0	0	0	0	0	0	
520	0.75	3.74		U	0	U	U	0	Ŭ	U	U	2	U	2	0	1	0	0	0	0	0	1	0	0	0	0	0	0	. 0	0	
220	9.73	2.00		U	U	0	U	U	U	0	U	2	U	0	1	1	0	0	1	0	0	0	0	· 0	0	0	0	0	Q	0	
240	0.74	1.73	y 7		0	U A	0	U	0	0	Ů	4	U	2	U	2	U	0	U	U	0	0	0	0	0	. 0	0	0	0	0	
500	9.71	1.00		U	0	U	U	U	Ŭ	0	Ű	. ว	U	2	U O	4	U	0	0	0	0	0	0	0	0	0	· 0	0	0	0	
200	10.40	4.19	,) , F	U A	0	0	Ű	Ű	0	0	0	4		Ŭ	U.	2	U	Ŭ	Ű	Û	Û	Û	0	0	0	0	0	0	0	0	
5/U 500	15 00	1.04		0	0	0	Ű	U A	0	0	0	4	· I	Ŭ			U	Ŭ	Ű	U	Ű	U	Ű	Ű	U	0	0	0	0	0	
200	13.00	9.04		0	U C	U O	0	0	0	0	0	1	U A	U	, i	U A	U	U 1	Ű	U	U	U	U	U	0	0	0	0	0	1	
390	17 50	U./0		0	0	0	0	U A	0	0	0	0	0	U	U	0	U	1	U	Ű	U	U.	0	0	0	0	0	0	0	0	
600	14.00	3.00	4	U	Ű	U	U	U	U A	U A	0	4	U	Ű	U	2	U	U	Ű	0	Ō	. 0	0	0	0	1	0	0	0	0	
610	12.44	5.15	y y	0	0	U	U	U	U	U	U	1	U	U	U	1	Ð	0	0	0	0	0	0	1	0	0	0	0	0	0	

178

. · ·

Table D-1. --Continued.

MALEK	EY	-										;		2.5	• .				÷	1.	÷.	. ·			•		-			
LEN- GTH	AVG AGE	STD. DEV.	FREQ- UENCY	AGE O	(1N 1	YEAR 2	S) 3	4	5	6	7	8	9	.10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25	264
620	12.25	0.50	4	0	0	0	0	0	0	0	0	0	0	0	0	3	1		0	Q	. 0	0	0	0	0	0	0	0	0	
630	13.67	3.83	. 6	0	0	0	0	0	0	0	0	0	0	1	0	2	1	_1	. 0	0	0	Q	0	0	1	0	· 0	0	0	Ì
64U 450	12.75	1.50	4	0	0	0.	0	0	U	-0	U.	0	0	. D	0.	5	0	0	. 1	0	. 0	. 0	0	0	0	-0	0	0	0	
640	11 75	1 26	· · · · · · · · · · · · · · · · · · ·	. U 0	. 0	0	0	ň	0	0	0	ں م	U A	U.	0	2	1		0	0	0	0	0	0	0	0	. 0	. U 0	U	1
670	10.00	0.00	. 1	ŏ		Ö	ŏ	ŏ	-0	Ö	ŏ	Ŏ.	ŏ	1	0	0		Ö	0	0	ŏ	0	0	ů.	Ő.	0	0	0	0	
680	18.00	0.00	i	ō	Ō	Ō	Ō	ŏ	ō	.0	ō	õ	Õ	Ō	ō	ŏ	ŏ	· õ	ō	·ŏ	ŏ	ĩ	Ō	· ŏ.	ŏ	ŏ	Ō	ŏ	Ő	
690.	14.00	0.00	2	0	i ., Ö	0	Ó	Ò	0	0	Ō	0	Ō	0	Ō	Ō	Ō	2	Ō	Ō	Ō	Ō	Ō	Õ	Õ	Ō	÷ Ō	ō	, Õ.	. (
710	17.00	0.00	1	0	0 1	0	0	0	0	0	0	0	0	0	0	0	- 0	Ó	0	0	-1	0	0	0	0	0	. 0	0.	0	1
730	18.00	0.00	1	0	0 (0	Ô.	0	0	· O	. 0	0	O	0	0	0	0	0	0	0	0	× 1	0	0	0	- 0	0	0	0	
740 	13.00	0.00	. 1	0	0 (0	0	0 	0	• 0 	0	0	0	0	0	0	1	0	0	0	0 	0	0	0	0 	• 0	0 	0	0	
TOTAL	7 93	6 38	. 721	·	, , ,	-25	25	· 10	10	17	7	67	٦.	a		4	6	6	ว	'n	1	τ.	٩	1	1	· · •	0	0	o.	
IVIAL				,					10		•		3	. .		0	-	.		Ŭ.			v	•	•	•	Ų.	Ų	. "	
• •							••							•		••								:						
																						1		-						
·. ·					•								:	,		•			:											
	-						· .							. '						-							-			
, i		-		-		·. ·						-						•												

Table D-1. --Continued.

FEMALE KEY

LEN- GTH	AVG Age	STD. DEV.	FREQ- UENCY	AGE O	(IN 1	YEAR 2	s) . 3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25	26+		
200	2.00	0.00	2	Ó	0	2	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0		
210	1.75	0.50	4	0	1	3	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	Ó		
220	2.00	0.00	6	0	0	6	0,	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0		
23U 270	2.07	0.58	2	. U 0	0	2	2	0	U A	0	U A	U N	U A	0	0	U	0	0	0	0	0	0	. O	0	0	. 0	0	0	0	0		
50	2.00	0.00	1	ň	0	1	0	ň	ñ	0	0	ň	n n	ň	0	0	0	0	0	U 0	U A	0	Ű	0	U A	0	Ű	0	0	0		
:60	2.00	0.00	i	Ō	ŏ	i	ŏ	ŏ	ō	ŏ	ŏ	ŏ	ŏ	ŏ	ŏ	ŏ	ŏ	ŏ	ŏ	ŏ	ŏ	ŏ	ŏ	ŏ	ŏ	ŏ	Ő	ŏ	Ő	ů ů		
70	3.00	0.00	1	0	. 0	0	1	0	Ó	0	0	Ō	0	. 0	Ō	0	Ō	Ō	Ō	ō	Õ	ō	ō	ō	Ō	ō	ŏ	õ	ŏ	ŏ		
80	3.50	0.71	2	0	0	0	1	1	0	0	0	0	0	0	0	0	0	Û	0	0	0	Û	0	0	0	Ő	0	Ō	Ō	Õ		
90	3.00	0.00	1	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	·· 0		
00	3.00	0.00	4	0	0	0	4	0	0	0	0	0	0	0	• 0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0		
10	J.0/	0.20	ני	0	0	0	1	2	0	0	U	0	U	0	Ű	U	0	· U	0	0	0	0	0	0	0	0	0	0	0	0		
50	4.00	0.00	1	ő	0	ő	0	1	0	0 N	0	ň	0	ň	Ň	0	0	0	0	0	0	0	0	0	0	0	0	0	U A	0		
60	5.50	0.71	ż	ŏ	ŏ	ŏ	ŏ	ò	ĩ	ĭ	ŏ	ŏ	ŏ	ŏ	ŏ	ŏ	ŏ	ŏ	ŏ	ŏ	ă	- ŭ	ă	ă	ő	0	0	0	ñ	0		
70	5.00	0.00	1	Ō	0	Ō	Ō	0	1	Ō	0	Ō	Ō	Ō	Ō	· Ō	Ō	Õ	Õ	ŏ	ō	ō	ō	ō	ŏ	ō	ŏ	ŏ	ŏ	ŏ		
30	5.50	0.71	2	0	0	0	0	0	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	Ó	0	Ó	Ó	0	0	Ō		
90	4.50	0.71	2	0	0	0	0	1	1	Û	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0		
00	4.50	0.71	2	0	0	0	0	1	1	0	0	0	0	0	0	0	0	Ő	0	0	0	0	0	0	0	0	0	0	0	0		·õ
20	5.16	0.50		U 0	0	0	0	1	2	1	0	0	U	0	0	0	0	U A	U	U	0	0	0	0	0	0	0	0	0	0		:
.0 10	5.83	0.07	6	å	Ő	Ū.	ä	ò	2	2 7	1	0	0	0	٥ ٥	0 0	0	0	0	0	0	0	0	0	Ŭ	0	U A	U O	0	0		
0	6.40	0.89	5	Ō	· ŏ	Ō	Ō	ō	ō	4	ō	ĭ	ŏ	ŏ	ō	ŏ	ŏ	õ	ŏ	ŏ	Ō	ŏ	ŏ	ŏ	ň	ő	Ő	ň	ň	ñ	••	
j0	5.67	0.58	3	0	0	0	0	0	1	Ż	Ó	Ō	0	0	Ō	Ō	Ō	Ō	Ō	Ō	Ō	ŏ	ō	ŏ	ō	ŏ	· ŏ	ō	ŏ	ŏ		
60	6.00	0.93	8	0	0	0	0	0	2	5	0	1	0	0	0	0	Ū,	0	0	0	0	0	0	0	· 0	0	0	Ó	0	Ō		
,70	8.00	0.00	3	0	0	0	0	0	0	0	0	3	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	•	
80	8.00	2.00		0	0	0	0	0	0	2	0	4	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0		
90 00	8 00	0.00	2	Ň	0	0	0	0	0	2	. U	с 1	0	0	0	0	0	0	0	0	U A	U	0	U	U	U	U	U	0	0		
10	8.44	2.92	9	ŏ	ŏ	ŏ	ŏ	ŏ	ŏ	ĭ	ž	5	ŏ	ŏ	ŏ	Ő	0	ŏ	Ő	1	ñ	ň	0	0 0	ň	0	0	0	U N	U N		•
20	8.60	1.95	5	Ō	Ō	Ō	Ō	Ō	Ō	Ó	1	3	Ō	Õ	Ō	1	Õ	ō	ŏ	ò	ŏ	ŏ	ŏ	ŏ	ŏ	ŏ	ŏ	ŏ	ŏ	ŏ		
i30 1	10.78	3.46	- 9	0	0	0	0	0	0	1	0	3	0	0	0	3	0	0	1	1		Ō	ō	ŏ	Ō	õ	ŏ	ō	õ	ō		
40	9.71	1.90	14	0	0	0	0	0	0	0	0	7	0	2	0	5	0	0	0	0	0	0	0	0	0	0	0	0	0	0		
50 1	11.38	2.72	8	Ô	0	0	0	0	0	1	0	0	0	1	2	2	0	1	1	0	· 0	0	0	0	0	0	0	0	0	Ö		
60 1 70	0 71	2.39	87	0	U	U	U	Ű	Ű	U	0	0	0	1	1	4	1	0	0	0	0	1	0	0	0	0	0	0	0	0		
70 .RQ 1	7./1	1 64	10	U N	0	0	U N	ů N	0 0	0	0	4	0	· U	1	د ۲	0	U	U O	U O	U	U	U A	Ŭ	U	U A	Ű	0	0	0		
90 1	12.79	3.42	14	Ő	ŏ	ŏ,	ŏ	ŏ	ŏ	ŏ	ŏ	ź	Ő	1	1	6	Ő	0	0	1	0	ט ז	0	0	0	0	0	0	U 0	U 0		
500 1	2.00	0.00	10	Ō	ō	Ō	Ō	õ	Ō	ō	Ō	õ	ŏ	ò	Ō	10	ŏ	ŏ	ŏ	ò	õ	õ	õ	ŏ	ŏ	ŏ	ň	ň	ň	ň		
10 1	2.62	3.07	13	Ō	Ó	0	Ō	Ō	0	Ō	Ō	1	1	1	Ō	6	Ĩ	Ō	Ō	ĩ	ŏ	ž	õ	ŏ	ō	ŏ	ŏ	ŏ	ŏ	ŏ		
20 1	2.18	2.27	11	0	0	0	0	0.	0	0	0	1	0	0	0	9	0	0	0	•0	0	1	0	0	0	0	0	0	0	0		• •
530 1	1.09	2.84	11	0	Ô	0	0	0	0	0	0	4	0	1	0	2	2	1	0	1	0	0	0	0	0	0	0	0	0	0		
540 1	2.00	1.79	11	U	U	U	Ū	0	U	U	Û	٦	0	0	0	9	0	0	0	1	0	0	0	. 0	0	0	0	0	0	0		

Table D-1.--Continued.

FEMALE KEY

LEN	AVC	CTD	EDEO.	ACE	714	VCAD	<u> </u>		<u> </u>						·			·				سقمى			 ,					
GTH	AGE	DEV.	UENCY		-1	2	ັ <u>ງ</u>	4	5	6	7.	8	-9	10	11	12	13	14	-15	16	17	18	19	20	21	22	23	24	25	26
650 1	14.00	2.65	7	0	Ō	0	Ō	0	Ó	0	Ō	Ö	0	0	0.	4	Ō	0	1	0		1		0	0	0	0	0.	0	
660 1	13.80	2.70	10	Ó	Ó	0	Ō	Ō	0	Ó	Ō	Ó	Ō	Õ	Ò	6	Ō	1	1	Ō	ó	1	Ĩ	ŏ	ŏ	Ō	ŏ	Õ	ŏ	
670 1	14.00	2.49	10	0	0	0	· 0	0	0	0	0	0	0	0	0	5	0	· 2	0	-1	0	2	Ó	Ó	Ó	0	0	• 0	Ó	
680 1	12.86	2.27	7	0	0	0	0	0	0	0	0	0	0	0	0	6	0	Ó	0	0	0	1	0	· 0	0	0	0	0	0	
690 1	15.00	3.35	6	0	0	0	0	0	. 0	. 0	0	. O.	Ó	0	0	2	× 1.	0	<u>1</u>	Ò	0	1	0	1	0	0	0	0	0	
700 1	15.71	2.50	7	0	0	. 0	0	0	0	0	0	0	0	0	0	.1	1	0	1	1.	0	3	0	0	0	0	0	Ó	0	Ċ
710 1	14.17	2.99	6	0	· 0	0	-0	0	0	0	0	•0	0	- O`	0	. 3.	1	0	0	0	0	2	0	0	0	0	. 0	0	0	
720 1	15.80	3.19	5	· 0	0	0.	Ò	0	0.	0	0	0	0	0	1	0	0	1_	0	Ó	0	. 3	0	Ŭ Ū	0	0	0	0	0	
740 1	16.00	3.46	3	0	0	0	0	0	0	0	0	01.	0	0	O.	- 1	0	0	0	0	0	. 2	0	0	. 0	0	0	0	Ō	
770	16.50	2.12	2	· 0	0	0	0	0	0	0	0	0	0	· 0,	· 0	Ó	0	0	1	0	0	1	0	- 0	0	0	· Ó	0	Ó	
				• • •		•••	<u></u>			• • •		÷		•			.	•										'		•
	·	•										• • •										÷.							1	
OTAL	9.93	4.43	296	0	1	16	12	8	16	26	4	48	- 1	8	6	95	7	6	· 7	8	1	24	1	1	0	ູ 0	. 0	0	0	
			-	1.1									•										÷					-	•	
· · ·											-					-									•					
	•		۰.																						-					
	. /																				•									
					-																		Ĩ							
۰.	· .								· •		. '			•					-		-									
				-																										

Table D-1.--Continued.

UNSEXED KEY

LEN-	AVG	STD.	FREQ-	AGE	(IN	YEARS	\$)	,	-		-	•	•				4-							_						
i H 	AGE	DEV.	UENCY	U	, ,		<u> </u>	4	<u> </u>	6	· · · · ·	8		10	11	12	15	14	15	16	17	18	19	20	21	22	23	24	25	26+
200	2.00	0.00	9	0	0	9	O	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	(
210	1.86	0.38	7	0	1	6	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
220	2.00	0.00	9	0	0	9	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	· 0	0
230	2.38	0.52	8	0	0	5	3	0	0	0	0	0	0	0	0	0	0	Ó	0	0.	0	0	Ó	Ó	Ō	Ö.	Ó	Ō	Ō	Ċ
240	2.29	0.49	7	0	0	5	2	0	0	0	0	0	0	0	0	0	0	0	0	0	0	Ó	0	0	0	Ō	Ō	0	0	C
250	2.25	0.46	8	0	Ō	6	2	0	Ō	Ó	Ō	Ō	Ō	Ō	Ő	Ő	Ō	Ō	Ō	Õ	Ō	Õ	Õ	Õ	Ō	Ō	ŏ	ŏ	ŏ	Ċ
260	2.00	0.00	1	0	Ó	1	Ō	0	Ō	0	Ō	Ō	Ó	Ó	Ō	Ō	Õ	Ő	Ō	Ō	Ō	Õ	Ō	Ō	Õ	ŏ	Õ	Ō	ŏ	Ō
270	3.00	0.00	3	Ō	Ō	Ó	3	Ō	Ō	Ō	Ō	Ō	Ō	Ō	Ō	Õ	ō	ō	Ō	õ	Ō	- 0	Õ	Ō	ō	Ō	ŏ	ō	ŏ	Ċ
280	3.29	0.49	7	Ō	Ō	Ō	5	2	Ō	Ō	Õ	Õ	Ō	Õ	Ō	Ō	Ō	Ō	Ō	Õ	Õ	Ō	Ō	Õ	ŏ	ŏ	Ō	ō	ō	Ċ
290	3.00	0.00	5	Õ	Õ	Ō	5	ō	Õ	Ō	Ō	Ō	Ō	Ō	ō	Ō	ō	Ō	Ō	õ	Ō	Õ	ŏ	ō	õ	ō	ň	õ	ň	ň
300	3 14	0.38	. 7	Ō	Ō	ŏ	6	1	Ō	Ō	ñ	Õ	ŏ	Ō	ō	ñ	ñ	ň	Ň	ň	õ	Ō	ñ	Ō	ñ	ň	ň	ñ	ñ	Č
310	3 38	0.52	, 8	ŏ	ŏ	ŏ	5	ż	ŏ	ō	õ	ñ	ŏ	ň	ň	ŏ	ň	ň	ี กั	ň	ň	ň	ň	ň	ň	ŏ	ň	ň	กั	č
320	3,33	0.58	3	ŏ	Ő	ŏ	2	1	õ	ō	õ	ň	ŏ	ň	ň	ō	ň	ň	ň	ň	ŏ	ň	ň	ň	ň	ň	Ň	ň	ň	ň
330	3.33	0.58	ž	ŏ	ŏ	ň	2	1	ň	Ő	ō	ŏ	ō	ŏ	ň	ň	ŏ	ŏ	ŏ	õ	ŏ	ň	ŏ	ň	ŏ	ň	ŏ	ň	ň	ŏ
340	3 75	0.06	ĩ	ň	ň	ň	2	i	ĭ	ň	ň	ň	ň	ň	ň	ň	ň	ň	ň	ň	ň	ň	ň	ň	ň	ň	ň	ň	ň	ň
350	4 00	0.00	2	ŏ	ň	ň	õ	2	'n	ň	ň	ň	ň	ň	ň	ň	ň	ň	Ň	ň	ň	ň	ň	ň	ň	ň	ň	ň	ň	ň
340	5 50	0.00	2	ň	ŏ	ň	ň	ñ.	1	1	ŏ	ň	ň	ň	ň	ŏ	ň	ň	ň	ň	ň	ň	ň	ň	ň	ň	ň	ň	ň	n o
100	5 00	0.71		ň	ň	ň	ň	1	2	i	ň	ň	ň	ň		ň	ň	ň	ň	ň	ň	ň	ň	ň	Ň	Ň	ň	ň	ň	
IRO	6 60	0.02	, , , , , , , , , , , , , , , , , , ,	ň	. U	ň	ň	्य	1	1	ň	ň	ň	ň	Ň	ň	ň	ň	ň	0	ň	ň	ň	ň	ň	0	٥ ٥	· 0	0	0
100	4.00	0.07		. 0	ň	ň	ň	1	ż	6	ň	ň	ň	ň	ň	ň	ň	ň	ň	ň	ň	ň	Ň	ň	ň	Ň	Ň	ň	л Л	0
.00	5 00	1 00	7	ň	ň	ň	ň	1	1	ň	ň	ň	οŭ.	ň	ň	ň	ň	ň	ň	ň	ň	ň	ň	ň	ň	ň	Ň	Ň	0	0
10	A 00	1 22	0	ň	ň	ň	ň	'n		ż	ň	2	ň	ň	ň	ň	0	ň	ň	ň	ň	ň	ň	ň	۰ ۵	ň	Ň	ň	ó	
20	5 74	1 07	17	ň	ň	ň	ň	1	7	5	ž	1	ň	ň	ň	ň	ň	ň	ň	0	Ň	Ň	ň	0	Ň	0	0	0	0	0
320	4 50	1 18	10	ň	0	ň	ň		5	~	1	· .	ň	ň	Ň	0	ň	ň	ŏ	ň	Ň	Ň	ň	ň	0	Ň	Ň	0	0	0
20	4 50	1 10	10	Ň	0	Ň	ň	ň.	1	~	4		1	۰ ۵	Ň	0	ň	Ň	ň	0	~	Ň	0	Ň	<u> </u>	· U	Ň	0		
50	7 10	1 90	11	š	ň	Ň	ň	ň	4	7	5	ż		ň	Ň	1	٥ ٥	0	0	Ň	0	Ň	Ň	Ň	Ň		Ň	Ň	Ň	0
4.40	4 71	1 82	1/	0	ň	. 0.	ň	ň	5	Ā	ñ	7	ň	ň	ň		0	ň	Ň	0	0	Ŭ.	· U	0	ň	Ň	0	Ň		
400	8 80	1 70		ň	- U 0	ň	ň	ň	<u>د</u>	ň	ň		ň	Ň	ň	1	Ň	Ň	Ň	0	Ň	Ň	ň	Ň	0	0	0	0	0	0
10	9 /0	1.17	15		0	Ň	Ň	0	ň	2	1	à	Ň	0		'	0	~	0	0	Ŭ.	0		~	0		Ň	0	Ű	u 0
100	7 55	1.04	11	Ň	0	Ň	ň	ň	Ň	7		7	1	ň		2	ň	0	· 0	ň	0	Ň	0	0	0	Ň	0	0	, v	
500	0.22	1 / 9	10	Ň	0	Ň	ň	ň	Ň	1	Ň	· Ó		Ň	0	1	~	0	0	Ň	0	0	v v	~		Š	0	U A	Ŭ	
500	0.20	3 40	17	ŭ	0	Ň	0	Ň	Ň		2	0	0	Ň	0		0	0	Ň	4	ů Č	Ŭ	0	0	0	Ŭ	Ň	Ű	U	
510	0.02	2.00	13	ŏ	0	0	Ň	~	0		4	6	0	2	0	'	0	Ň	0		Ű		0	0	0	U	U A	0	U O	U O
520 570 4	9.91	3.10	17	0	0	Ŭ	Ň	Ň	0	1		2	0	2		~	0	U A	2	0	0		U	U A	Ŭ	Ű	U	0	U	U A
500 1	10.29	3.00	71	0	. 0	U.	~	0	0		0	· 0	0	,		4	0	0	Š		Ŭ	U	Ű	Ŭ	Ŭ	0	U.	U	U	U A
04U 1	10.09	1.00	23	0	Ŭ	U N	0	0	U	0	0	Y,	Ű	4	U 7	10	U	0	U	U	U	U	U	U	U	U	U	0	U	U
000	10.60	2.41	15	U	0	Ű	U	0	U	I A	Ű	2	U A	2		4	U	1	1	U	U	U	U	U	U	0	U	0	U	
1 000	11.69	2.46	15	U	0	U	U	U	U U	0	U	2	U	1	1		1	U	U	0	0	1	0	U	0	0	0	0	0	9
5/U	9.67	1.92	12	0	0	U	U	U	U	U	U.	0	1	U	1	4	U	Ū	0	0	0	0	0	U	0	0	0	0	0	0
	11.85	4.56	13	0	0	0	U	U	. U	Ű	Ű	5	U	1	Z	0	0	Ō	0	0	0	0	0	. 0	· O	Ō	0	0	0	1
90 1	2.62	2.80	21	0	0	0	0	0	0	0	0	Z	0	1	1	12	.0	1	0	1	0	3	0	0	0	0	0	0	0	0
500 1	2.71	2.67	14	Ō	Ō	Ō	Ő	0	0	Ō	0	0	0	Ō	0	13	0	0	- 0	Q	0	0	0	0	0	1	0	0	0	0
510 1	2.55	3.02	22	0	0	0	0	0	0	. 0	0	2	1	1	0	13	1	0	0	1	0	2	0	1	0	. 0	0	0	0	0
J20 1	2.20	1.93	J 15	0	0	0	0	0	0	0	0	· 1	0	0	0	12	1	0	0	0	0	1	0	0	0	0	0	0	0	0

-

Table D-1. - - Continued.

LEN-	AVG	STD.	FREQ-	ÂG	E (IN	YEAR	s)_		<u></u>																							
GTH	AGE	DEV.	UENCY		0	1	2	3	4	5	6	7	8	9	• 10	11	12	• 13	14	15	16	17	18	19	20	21	22	23	24	25	26+		
630	12.00	3.35	17		0	0	0	0	0	0	. 0	0	4	0	2	0	4	3	2	0	1	0	0	. 0	0	1	Q	0	0	0	0		
640	12.20	1.70	15		Û	0	0	0	0	0	Ű, 1	0	1	·· 0	· 0	0	12	0	0	1	1	Û	Û	•0	0	Û	0	0	0	0	0		
650	13.75	2.55	8		0	0	0	0	0	0	.0	0	0	0.	. 0	· 0	5	0	0		0	1	1	0	0	0	0	· 0	. 0	0	Ö		
660	13.21	2.52	· 14		0	0	: 0	. 0	· 0	0	0	0	0	0	1	. 0	8	1	1	1	Û	0	1	1	0	0	0	0	0	Ó	Û		
670	13.64	2.66	11		0	0	0	0	0	0	0	0	0	0	1	0	5	0	· 2	· Ô	1.	0.	2-	0	0.	. 0	0	0	0	· 0	0		
680	13.50	2.78	8		0	0	0	0	0	0	0	ΰ	0	0.	0	Q	6	0	0	0	0.	. 0	2	0	0	0	0	0	Û	0	΄0		-
690	14.75	2.87	8	•	0	. 0	° 0	0	0	0	0	0	0	0	0	0	2	1	2	1	0	0	1	0	1	0	0	0	0	0	0		
700	15.71	2.50	- 7		0	, O	0	Û	Û	Û	Û	0	0	0	. 0	0	· 1	1	0	1	1	0	3	0.	0	· 0	0	0	0	0	0		• -
710	14.57	2.94	7		0	0	0 -	. 0	0	0	0	´ 0	0	0	0	. 0	3	i 1.	0	•0	0	1	2	. 0	0	. 0 -	0	· 0	10	0	0		
720	15.80	3.19	5		0 -	0	0	0	0	0	Û	0	0	0	0	- 1	ំ	. O	1.	0	. 0	0	3	0	. 0	0	Û	0	0	0	0	:	
730.	18.00	0.00	1		0	0	0	0	0	0	0	0.	0	· 0	· 0	0	· 0	0	0	0	0	0	1	0	· 0	0	0	0	0	0	0		
740	15.25	3.20) 4		0	0	· 0	0	0	΄0	0	0	0	0	0	0	1	<u>1</u>	0	0	Û	0	2	Û	. 0	· 0,	- 0	Ð	0	0	0		
770	16.50	2.12	2		0	0	0	0	0	0.	0	. 0	O,	0	· 0	0	0	0	0	1	0	0	1	0	0	0	0	0	0	0	0		
•••	••••					• • •	•••	•••					• • •						•••					• • •				•••					
TATO	9.08	4.52	517		Û	1	41:	37	18	26	43	11	. 95	. 4	- 17	10	141	. 11	10	9	8	2	27	'n	2	1	1	0	D	D	1		
~~~														÷		<i></i>			<del>. ,</del>									<u> </u>					F
•				-						•	•				1	~		• •						•					•	•			0
										-						•					•							•					U U